LIPIcs.SoCG.2024.40.pdf
- Filesize: 1 MB
- 15 pages
We study a fundamental problem in Computational Geometry, the planar two-center problem. In this problem, the input is a set S of n points in the plane and the goal is to find two smallest congruent disks whose union contains all points of S. A longstanding open problem has been to obtain an O(nlog n)-time algorithm for planar two-center, matching the Ω(nlog n) lower bound given by Eppstein [SODA'97]. Towards this, researchers have made a lot of efforts over decades. The previous best algorithm, given by Wang [SoCG'20], solves the problem in O(nlog² n) time. In this paper, we present an O(nlog n)-time (deterministic) algorithm for planar two-center, which completely resolves this open problem.
Feedback for Dagstuhl Publishing