Time-Aware Probabilistic Knowledge Graphs

Authors Melisachew Wudage Chekol, Heiner Stuckenschmidt

Thumbnail PDF


  • Filesize: 1.28 MB
  • 17 pages

Document Identifiers

Author Details

Melisachew Wudage Chekol
  • Data and Web Science Group, University of Mannheim, Germany
Heiner Stuckenschmidt
  • Data and Web Science Group, University of Mannheim, Germany

Cite AsGet BibTex

Melisachew Wudage Chekol and Heiner Stuckenschmidt. Time-Aware Probabilistic Knowledge Graphs. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model.

Subject Classification

ACM Subject Classification
  • Information systems → Web Ontology Language (OWL)
  • Computing methodologies → Probabilistic reasoning
  • Computing methodologies → Temporal reasoning
  • temporal
  • probabilistic
  • knowledge graph
  • OWL-RL


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. The semantic web, pages 722-735, 2007. Google Scholar
  2. Michael H. Böhlen, Richard T. Snodgrass, and Michael D. Soo. Coalescing in Temporal Databases. In VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 180-191, 1996. Google Scholar
  3. Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr, and Tom M Mitchell. Toward an Architecture for Never-Ending Language Learning. In AAAI, volume 5, page 3, 2010. Google Scholar
  4. Melisachew Wudage Chekol, Valeria Fionda, and Giuseppe Pirrò. Time Travel Queries in RDF Archives. In Joint proceedings of the 3rd Workshop on Managing the Evolution and Preservation of the Data Web (MEPDaW 2017) and the 4th Workshop on Linked Data Quality (LDQ 2017) co-located with 14th European Semantic Web Conference (ESWC 2017), Portorož, Slovenia, May 28th-29th, 2017., pages 28-42, 2017. Google Scholar
  5. Melisachew Wudage Chekol, Jakob Huber, Christian Meilicke, and Heiner Stuckenschmidt. Markov Logic Networks with Numerical Constraints. In ECAI 2016, pages 1017-1025, 2016. Google Scholar
  6. Melisachew Wudage Chekol, Giuseppe Pirrò, Joerg Schoenfisch, and Heiner Stuckenschmidt. Marrying Uncertainty and Time in Knowledge Graphs. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages 88-94, 2017. Google Scholar
  7. Yang Chen, Daisy Zhe Wang, and Sean Goldberg. ScaLeKB: scalable learning and inference over large knowledge bases. The VLDB Journal, 25(6):893-918, 2016. Google Scholar
  8. Alex Dekhtyar, Robert Ross, and VS Subrahmanian. Probabilistic temporal databases, I: algebra. ACM Transactions on Database Systems (TODS), 26(1):41-95, 2001. Google Scholar
  9. Anton Dignös, Michael H Böhlen, and Johann Gamper. Temporal alignment. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pages 433-444. ACM, 2012. Google Scholar
  10. Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion. In SIGKDD, pages 601-610, 2014. Google Scholar
  11. Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic database model for information extraction. Proc. of the VLDB Endowment, 6(14):1810-1821, 2013. Google Scholar
  12. Maximilian Dylla, Iris Miliaraki, and Michael Theobald. Top-k query processing in probabilistic databases with non-materialized views. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages 122-133. IEEE, 2013. Google Scholar
  13. Maximilian Dylla, Mauro Sozio, and Martin Theobald. Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases. In BTW, pages 474-493, 2011. Google Scholar
  14. Tobias Emrich, Hans-Peter Kriegel, Nikos Mamoulis, Matthias Renz, and Andreas Zufle. Querying uncertain spatio-temporal data. In Data Engineering (ICDE), 2012 IEEE 28th International Conference on, pages 354-365. IEEE, 2012. Google Scholar
  15. Opher Etzion. Temporal databases: research and practice, volume 1399. Springer Science & Business Media, 1998. Google Scholar
  16. Dengfeng Gao, S Jensen, T Snodgrass, and D Soo. Join operations in temporal databases. The VLDB Journal - The International Journal on Very Large Data Bases, 14(1):2-29, 2005. Google Scholar
  17. Kiril Gashteovski, Rainer Gemulla, and Luciano Del Corro. Minie: minimizing facts in open information extraction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2630-2640, 2017. Google Scholar
  18. Fabio Grandi. Multi-temporal RDF ontology versioning. In Proceedings of the 3rd International Workshop on Ontology Dynamics (IWOD-09), 2009. Google Scholar
  19. Eric Gribkoff and Dan Suciu. SlimShot: In-Database Probabilistic Inference for Knowledge Bases. PVLDB, 9(7):552-563, 2016. Google Scholar
  20. Claudio Gutierrez, Carlos A Hurtado, and Alejandro Vaisman. Introducing time into RDF. Knowledge and Data Engineering, IEEE Transactions on, 19(2):207-218, 2007. Google Scholar
  21. Olaf Hartig and Bryan Thompson. Foundations of an alternative approach to reification in RDF. arXiv preprint, 2014. URL: http://arxiv.org/abs/1406.3399.
  22. Patrick Hayes. RDF Semantics. W3C Recommendation, 2004 . Google Scholar
  23. Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard De Melo, and Gerhard Weikum. YAGO2: exploring and querying world knowledge in time, space, context, and many languages. In Proceedings of the 20th international conference companion on World wide web, pages 229-232. ACM, 2011. Google Scholar
  24. Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark, and Oren Etzioni. Markov logic networks for natural language question answering. arXiv preprint, 2015. URL: http://arxiv.org/abs/1507.03045.
  25. Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos Costa, and Ricardo Rocha. On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming, 11(2-3):235-262, 2011. Google Scholar
  26. Markus Krötzsch. OWL 2 Profiles: An introduction to lightweight ontology languages. In Thomas Eiter and Thomas Krennwallner, editors, Proceedings of the 8th Reasoning Web Summer School, Vienna, Austria, September 3-8 2012, volume 7487 of LNCS, pages 112-183. Springer, 2012. Google Scholar
  27. Anil Kumar, Vassilis J Tsotras, and Christos Faloutsos. Designing access methods for bitemporal databases. IEEE Transactions on Knowledge and Data Engineering, 10(1):1-20, 1998. Google Scholar
  28. Xiao Ling and Daniel S Weld. Temporal Information Extraction. In AAAI, volume 10, pages 1385-1390, 2010. Google Scholar
  29. Boris Motik. Representing and querying validity time in RDF and OWL: A logic-based approach. J. Web Semantics, 12:3-21, 2012. Google Scholar
  30. Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling up statistical inference in markov logic networks using an RDBMS. Proc. of the VLDB Endowment, 4(6):373-384, 2011. Google Scholar
  31. Gultekin Ozsoyoglu and Richard T Snodgrass. Temporal and real-time databases: A survey. IEEE Transactions on Knowledge and Data Engineering, 7(4):513-532, 1995. Google Scholar
  32. Katerina Papaioannou and Michael Böhlen. TemProRA: Top-k temporal-probabilistic results analysis. In Data Engineering (ICDE), 2016 IEEE 32nd International Conference on, pages 1382-1385. IEEE, 2016. Google Scholar
  33. Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and Mathias Verbeke. Inducing Probabilistic Relational Rules from Probabilistic Examples. In IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1835-1843, 2015. Google Scholar
  34. Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62(1-2):107-136, 2006. Google Scholar
  35. Anisa Rula, Matteo Palmonari, Andreas Harth, Steffen Stadtmüller, and Andrea Maurino. On the diversity and availability of temporal information in linked open data. The Semantic Web-ISWC 2012, pages 492-507, 2012. Google Scholar
  36. Anisa Rula, Matteo Palmonari, Axel-Cyrille Ngonga Ngomo, Daniel Gerber, Jens Lehmann, and Lorenz Bühmann. Hybrid acquisition of temporal scopes for RDF data. In European Semantic Web Conference, pages 488-503. Springer, 2014. Google Scholar
  37. Stefan Schoenmackers, Oren Etzioni, Daniel S Weld, and Jesse Davis. Learning first-order horn clauses from web text. In EMNLP, pages 1088-1098, 2010. Google Scholar
  38. Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré. Incremental knowledge base construction using deepdive. Proceedings of the VLDB Endowment, 8(11):1310-1321, 2015. Google Scholar
  39. Richard T Snodgrass. Temporal databases. In Theories and methods of spatio-temporal reasoning in geographic space, pages 22-64. Springer, 1992. Google Scholar
  40. Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases. Synthesis Lectures on Data Management, 3(2):1-180, 2011. Google Scholar
  41. Partha Pratim Talukdar, Derry Wijaya, and Tom Mitchell. Coupled temporal scoping of relational facts. In Proceedings of the fifth ACM international conference on Web search and data mining, pages 73-82. ACM, 2012. Google Scholar
  42. David Toman. Point vs. interval-based query languages for temporal databases. In Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 58-67. ACM, 1996 . Google Scholar
  43. Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communications of the ACM, 57(10):78-85, 2014. Google Scholar
  44. Esteban Zimányi. Temporal aggregates and temporal universal quantification in standard SQL. ACM SIGMOD Record, 35(2):16-21, 2006. Google Scholar