Forbidden Time Travel: Characterization of Time-Consistent Tree Reconciliation Maps

Authors Nikolai Nojgaard, Manuela Geiß, Daniel Merkle, Peter F. Stadler, Nicolas Wieseke, Marc Hellmuth



PDF
Thumbnail PDF

File

LIPIcs.WABI.2017.17.pdf
  • Filesize: 0.49 MB
  • 12 pages

Document Identifiers

Author Details

Nikolai Nojgaard
Manuela Geiß
Daniel Merkle
Peter F. Stadler
Nicolas Wieseke
Marc Hellmuth

Cite AsGet BibTex

Nikolai Nojgaard, Manuela Geiß, Daniel Merkle, Peter F. Stadler, Nicolas Wieseke, and Marc Hellmuth. Forbidden Time Travel: Characterization of Time-Consistent Tree Reconciliation Maps. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.WABI.2017.17

Abstract

Motivation: In the absence of horizontal gene transfer it is possible to reconstruct the history of gene families from empirically determined orthology relations, which are equivalent to event-labeled gene trees. Knowledge of the event labels considerably simplifies the problem of reconciling a gene tree T with a species trees S, relative to the reconciliation problem without prior knowledge of the event types. It is well-known that optimal reconciliations in the unlabeled case may violate time-consistency and thus are not biologically feasible. Here we investigate the mathematical structure of the event labeled reconciliation problem with horizontal transfer. Results: We investigate the issue of time-consistency for the event-labeled version of the reconciliation problem, provide a convenient axiomatic framework, and derive a complete characterization of time-consistent reconciliations. This characterization depends on certain weak conditions on the event-labeled gene trees that reflect conditions under which evolutionary events are observable at least in principle. We give an O(|V(T)|log(|V(S)|))-time algorithm to decide whether a time-consistent reconciliation map exists. It does not require the construction of explicit timing maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph is acyclic. The algorithms are implemented in C++ using the boost graph library and are freely available at https://github.com/Nojgaard/tc-recon. Significance: The combinatorial characterization of time consistency and thus biologically feasible reconciliation is an important step towards the inference of gene family histories with hor- izontal transfer from orthology data, i.e., without presupposed gene and species trees. The fast algorithm to decide time consistency is useful in a broader context because it constitutes an attractive component for all tools that address tree reconciliation problems.
Keywords
  • Tree Reconciliation
  • Horizontal Gene Transfer
  • Reconciliation Map
  • Time-Consistency
  • History of gene families

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. M. Altenhoff, B. Boeckmann, S. Capella-Gutierrez, D. A. Dalquen, T. DeLuca, K. Forslund, J. Huerta-Cepas, B. Linard, C. Pereira, L. P. Pryszcz, F. Schreiber, A. S. da Silva, D. Szklarczyk, C. M. Train, P. Bork, O. Lecompte, C. von Mering, I. Xenarios, K. Sjölander, L. J. Jensen, M. J. Martin, M. Muffato, T. Gabaldón, S. E. Lewis, P. D. Thomas, E. Sonnhammer, and C. Dessimoz. Standardized benchmarking in the quest for orthologs. Nature Methods, 13:425-430, 2016. Google Scholar
  2. A. M. Altenhoff and C. Dessimoz. Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol., 5:e1000262, 2009. Google Scholar
  3. M. S. Bansal, E. J. Alm, and M. Kellis. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics, 28(12):i283-i291, 2012. Google Scholar
  4. S. Böcker and A. W. M. Dress. Recovering symbolically dated, rooted trees from symbolic ultrametrics. Adv. Math., 138:105-125, 1998. Google Scholar
  5. M. A. Charleston. Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Math Biosci., 149(2):191-223, 1998. Google Scholar
  6. J.-P. Doyon, V. Ranwez, V. Daubin, and V. Berry. Models, algorithms and programs for phylogeny reconciliation. Briefings in Bioinformatics, 12(5):392, 2011. Google Scholar
  7. A. Dress, V. Moulton, M. Steel, and T. Wu. Species, clusters and the `tree of life': A graph-theoretic perspective. J. Theor. Biol., 265:535-542, 2010. Google Scholar
  8. W. M. Fitch. Homology: a personal view on some of the problems. Trends Genet., 16:227-231, 2000. Google Scholar
  9. M. Hellmuth. Biologically feasible gene trees, reconciliation maps and informative triples, 2017. (submitted) arXiv:1701.07689. Google Scholar
  10. M. Hellmuth, M. Hernandez-Rosales, K. T. Huber, V. Moulton, P. F. Stadler, and N. Wieseke. Orthology relations, symbolic ultrametrics, and cographs. J. Math. Biology, 66(1-2):399-420, 2013. Google Scholar
  11. M. Hellmuth, P. F. Stadler, and N. Wieseke. The mathematics of xenology: Di-cographs, symbolic ultrametrics, 2-structures and tree- representable systems of binary relations. Journal of Mathematical Biology, 2016. DOI: 10.1007/s00285-016-1084-3. Google Scholar
  12. M. Hellmuth and N. Wieseke. On symbolic ultrametrics, cotree representations, and cograph edge decompositions and partitions. In Dachuan et al., editor, Proceedings COCOON 2015, pages 609-623, Cham, 2015. Springer International Publishing. Google Scholar
  13. M. Hellmuth and N. Wieseke. From sequence data including orthologs, paralogs, and xenologs to gene and species trees. In Pierre Pontarotti, editor, Evolutionary Biology: Convergent Evolution, Evolution of Complex Traits, Concepts and Methods, pages 373-392, Cham, 2016. Springer. Google Scholar
  14. M. Hellmuth and N. Wieseke. On tree representations of relations and graphs: Symbolic ultrametrics and cograph edge decompositions. J. Comb. Opt., 2017. URL: http://dx.doi.org/10.1007/s10878-017-0111-7.
  15. M. Hellmuth, N. Wieseke, M. Lechner, H.-P. Lenhof, M. Middendorf, and P. F. Stadler. Phylogenomics with paralogs. Proceedings of the National Academy of Sciences, 112(7):2058-2063, 2015. URL: http://dx.doi.org/10.1073/pnas.1412770112.
  16. M. Hernandez-Rosales, M. Hellmuth, N. Wieseke, K. T. Huber, V. Moulton, and P. F. Stadler. From event-labeled gene trees to species trees. BMC Bioinformatics, 13(Suppl 19):S6, 2012. Google Scholar
  17. M. Lechner, M. Hernandez-Rosales, D. Doerr, N. Wieseke, A. Thévenin, J. Stoye, R. K. Hartmann, S. J. Prohaska, and P. F. Stadler. Orthology detection combining clustering and synteny for very large datasets. PLoS ONE, 9(8):e105015, 08 2014. Google Scholar
  18. D. Merkle and M. Middendorf. Reconstruction of the cophylogenetic history of related phylogenetic trees with divergence timing information. Theory in Biosciences, 4:277-299, 2005. Google Scholar
  19. A. C. J. Roth, G. H. Gonnet, and C. Dessimoz. Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics, 9:518, 2008. Google Scholar
  20. A. Tofigh, M. Hallett, and J. Lagergren. Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2):517-535, 2011. Google Scholar