Engineering Time-Dependent Many-to-Many Shortest Paths Computation

Authors Robert Geisberger, Peter Sanders



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2010.74.pdf
  • Filesize: 476 kB
  • 14 pages

Document Identifiers

Author Details

Robert Geisberger
Peter Sanders

Cite AsGet BibTex

Robert Geisberger and Peter Sanders. Engineering Time-Dependent Many-to-Many Shortest Paths Computation. In 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS'10). Open Access Series in Informatics (OASIcs), Volume 14, pp. 74-87, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)
https://doi.org/10.4230/OASIcs.ATMOS.2010.74

Abstract

Computing distance tables is important for many logistics problems like the vehicle routing problem (VRP). While shortest distances from all source nodes in S to all target nodes in T are time-independent, travel times are not. We present the first efficient algorithms to compute time-dependent travel time tables in large time-dependent road networks. Our algorithms are based on time-dependent contraction hierarchies (TCH), currently the fastest time-dependent speed-up technique. The computation of a table is inherently in Theta(|S|*|T|), and therefore inefficient for large tables. We provide one particular algorithm using only Theta(|S|+|T|) time and space, being able to answer queries two orders of magnitude faster than the basic TCH implementation. If small errors are acceptable, approximate versions of our algorithms are further orders of magnitude faster.
Keywords
  • time-dependent
  • travel time table
  • algorithm engineering
  • vrp

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail