Convergence Properties of Newton’s Method for Globally Optimal Free Flight Trajectory Optimization (Short Paper)

Authors Ralf Borndörfer , Fabian Danecker , Martin Weiser



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2023.3.pdf
  • Filesize: 0.67 MB
  • 6 pages

Document Identifiers

Author Details

Ralf Borndörfer
  • Zuse Institute Berlin, Germany
  • Free University of Berlin, Germany
Fabian Danecker
  • Zuse Institute Berlin, Germany
Martin Weiser
  • Zuse Institute Berlin, Germany

Cite AsGet BibTex

Ralf Borndörfer, Fabian Danecker, and Martin Weiser. Convergence Properties of Newton’s Method for Globally Optimal Free Flight Trajectory Optimization (Short Paper). In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 3:1-3:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/OASIcs.ATMOS.2023.3

Abstract

The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Continuous functions
  • Mathematics of computing → Continuous optimization
  • Mathematics of computing → Discretization
  • Mathematics of computing → Discrete optimization
  • Mathematics of computing → Network optimization
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Nonconvex optimization
  • Mathematics of computing → Ordinary differential equations
Keywords
  • shortest path
  • flight planning
  • free flight
  • optimal control
  • global optimization
  • Newton’s method

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. Borndörfer, F. Danecker, and M. Weiser. A Discrete-Continuous Algorithm for Free Flight Planning. Algorithms, 14(1):4, 2021. URL: https://doi.org/10.3390/a14010004.
  2. R. Borndörfer, F. Danecker, and M. Weiser. A Discrete-Continuous Algorithm for Globally Optimal Free Flight Trajectory Optimization. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022), 2022. URL: https://doi.org/10.4230/OASIcs.ATMOS.2022.2.
  3. R. Borndörfer, F. Danecker, and M. Weiser. Error Bounds for Discrete-Continuous Free Flight Trajectory Optimization. Journal of Optimization Theory and Applications, July 2023. URL: https://doi.org/10.1007/s10957-023-02264-7.
  4. R. Borndörfer, F. Danecker, and M. Weiser. Newton’s Method for Global Free Flight Trajectory Optimization. Oper. Res. Forum, 4(63), 2023. URL: https://doi.org/10.1007/s43069-023-00238-z.
  5. P. L. Lions. On the Schwarz Alternating Method. I. In 1st International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 1-42. SIAM, 1988. Google Scholar
  6. H. K. Ng, B. Sridhar, and S. Grabbe. Optimizing Aircraft Trajectories with Multiple Cruise Altitudes in the Presence of Winds. Journal of Aerospace Information Systems, 11(1):35-47, 2014. URL: https://doi.org/10.2514/1.I010084.
  7. C. A. Wells, P. D. Williams, N. K. Nichols, D. Kalise, and I. Poll. Reducing Transatlantic Flight Emissions by Fuel-Optimised Routing. Environmental Research Letters, 16(2):025002, 2021. URL: https://doi.org/10.1088/1748-9326/abce82.
  8. E. Zermelo. Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. ZAMM, 11(2):114-124, 1931. URL: https://doi.org/10.1002/zamm.19310110205.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail