It is folklore particularly in numerical and computer sciences that, instead of solving some general problem $f:A\to B$, additional structural information about the input $x\in A$ (that is any kind of promise that $x$ belongs to a certain subset $A'\subseteq A$) should be taken advantage of. Some examples from real number computation show that such discrete advice can even make the difference between computability and uncomputability. We turn this into a both topological and combinatorial complexity theory of information, investigating for several practical problem show much advice is necessary and sufficient to render them computable. Specifically, finding a nontrivial solution to a homogeneous linear equation $A\cdot\vec x=0$ for a given singular real $n\times n$-matrix $A$ is possible when knowing $\rank(A)\in\{0,1,\ldots,n-1\}$; and we show this to be best possible. Similarly, diagonalizing (i.e. finding a basis of eigenvectors of) a given real symmetric $n\times n$-matrix $A$ is possible when knowing the number of distinct eigenvalues: an integer between $1$ and $n$ (the latter corresponding to the nondegenerate case). And again we show that $n$--fold (i.e. roughly $\log n$ bits of) additional information is indeed necessary in order to render this problem (continuous and) computable; whereas finding \emph{some single} eigenvector of $A$ requires and suffices with $\Theta(\log n)$--fold advice.
@InProceedings{ziegler:OASIcs.CCA.2009.2277, author = {Ziegler, Martin}, title = {{Real Computation with Least Discrete Advice: A Complexity Theory of Nonuniform Computability}}, booktitle = {6th International Conference on Computability and Complexity in Analysis (CCA'09)}, pages = {269--280}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-939897-12-5}, ISSN = {2190-6807}, year = {2009}, volume = {11}, editor = {Bauer, Andrej and Hertling, Peter and Ko, Ker-I}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.CCA.2009.2277}, URN = {urn:nbn:de:0030-drops-22770}, doi = {10.4230/OASIcs.CCA.2009.2277}, annote = {Keywords: Nonuniform computability, recursive analysis, topological complexity, linear algebra} }
Feedback for Dagstuhl Publishing