Improved Rate Control Algorithm for Scalable Video Coding

Authors Xin Lu, Graham R. Martin

Thumbnail PDF


  • Filesize: 1.67 MB
  • 8 pages

Document Identifiers

Author Details

Xin Lu
Graham R. Martin

Cite AsGet BibTex

Xin Lu and Graham R. Martin. Improved Rate Control Algorithm for Scalable Video Coding. In 2013 Imperial College Computing Student Workshop. Open Access Series in Informatics (OASIcs), Volume 35, pp. 73-80, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


In the Scalable Video Coding (SVC) standard, a multi-layer based structure is utilised to support scalability. However in the latest Joint Scalable Video Model (JSVM) reference software, the rate control algorithm is implemented only in the base layer, and the enhancement layers are not equipped with a rate control scheme. In this work, a novel rate control algorithm is proposed for when inter-layer prediction is employed. Firstly, a Rate-Quantisation (R-Q) model, which considers the coding properties of different prediction modes, is described. Secondly, an improved Mean Absolute Difference (MAD) prediction model for the spatial enhancement layers is proposed, in which the encoding results from the base layer are used to assist the linear MAD prediction in the spatial/CGS enhancement layers. Simulation results show that, on average, rate control accuracy is maintained to within 0.07%. Compared with the default JVT-G012 rate control scheme employed in SVC, the proposed rate control algorithm achieves higher coding efficiency, namely an improvement of up to 0.26dB in PSNR and a saving of 4.66% in bitrate.
  • Inter-layer prediction
  • MAD prediction
  • Rate control
  • Scalable Video Coding (SVC)
  • SVC extension of H.264/AVC


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail