Algorithms for Infeasible Path Calculation

Authors Jan Gustaffson, Andreas Ermedahl, Björn Lisper

Thumbnail PDF


  • Filesize: 367 kB
  • 6 pages

Document Identifiers

Author Details

Jan Gustaffson
Andreas Ermedahl
Björn Lisper

Cite AsGet BibTex

Jan Gustaffson, Andreas Ermedahl, and Björn Lisper. Algorithms for Infeasible Path Calculation. In 6th International Workshop on Worst-Case Execution Time Analysis (WCET'06). Open Access Series in Informatics (OASIcs), Volume 4, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Static Worst-Case Execution Time (WCET) analysis is a technique to derive upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. One key component in static WCET analysis is to derive flow information, such as loop bounds and infeasible paths for the analysed program. Such flow information can be provided as either as annotations by the user, can be automatically calculated by a flow analysis, or by a combination of both. To make the analysis as simple, automatic and safe as possible, this flow information should be calculated automatically with no or very limited user interaction. In this paper we present three novel algorithms to calculate infeasible paths. The algorithms are all designed to be simple and efficient, both in terms of generated flow facts and in analysis running time. The algorithms have been implemented and tested for a set of WCET benchmarks programs.
  • Worst case execution time
  • real-time
  • control flow analysis
  • abstract interpretation
  • infeasible paths


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail