Development and Validation of Energy Simulation for Additive Manufacturing

Authors Li Yi , Jan C. Aurich

Thumbnail PDF


  • Filesize: 1.52 MB
  • 17 pages

Document Identifiers

Author Details

Li Yi
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Jan C. Aurich
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany

Cite AsGet BibTex

Li Yi and Jan C. Aurich. Development and Validation of Energy Simulation for Additive Manufacturing. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 1:1-1:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Additive manufacturing (AM) is a promising manufacturing technology towards cleaner production systems. Nevertheless, recent studies state that environmental benefits of AM are case-specific and need to be evaluated and confirmed in the design phase. To enable the energy performance evaluation in the design phase, developing convenient tools for energy prediction of AM has been an important research task. Aiming at this problem, this paper presents the research for energy modeling, simulation implementation, and experimental validation of an energy simulation tool of two AM processes: Selective laser melting (SLM) and Fused deposition modeling (FDM). The developed simulation tool can be conveniently used for energy consumption quantification and evaluation during the product and process design for AM.

Subject Classification

ACM Subject Classification
  • Applied computing → Computer-aided design
  • Additive manufacturing
  • fused deposition modeling
  • selective laser melting
  • energy simulation
  • eco-design for AM


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Mohsen Attaran. The rise of 3-d printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5):677-688, 2017. URL:
  2. Martin Baumers, Joost R. Duflou, William Flanagan, Timothy G. Gutowski, Karel Kellens, and Reid Lifset. Charting the environmental dimensions of additive manufacturing and 3d printing. Journal of industrial ecology, 21(S1):9-14, 2017. URL:
  3. Martin Baumers, Chris Tuck, Ricky Wildman, Ian Ashcroft, Emma Rosamond, and Richard Hague. Transparency built-in. energy consumption and cost estimation for additive manufacturing. Journal of industrial ecology, 17(3):418-431, 2013. URL:
  4. Wolfgang Borutzky. Bond Graph Methodology. Springer London, London, 2010. URL:
  5. David L. Bourell, Ming C. Leu, and David W. Rosen. Roadmap for additive manufacturing: Identifying the future of freeform processing. URL:
  6. Danfang Chen, Steffen Heyer, Suphunnika Ibbotson, Konstantinos Salonitis, Jón GarDar Steingrímsson, and Sebastian Thiede. Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of cleaner production, 107:615-625, 2015. URL:
  7. Concept Laser. Mlab cusing r., 2019. Google Scholar
  8. DIN. Fertigungsverfahren -begriffe, einteilung (manufacturing processes - terms and definitions, division), 2003. Google Scholar
  9. Jeremy Faludi, Martin Baumers, Ian Maskery, and Richard Hague. Environmental impacts of selective laser melting: Do printer, powder, or power dominate? Journal of industrial ecology, 21(S1):S144-S156, 2017. URL:
  10. Claes Fredriksson. Sustainability of metal powder additive manufacturing. Procedia manufacturing, 33:139-144, 2019. URL:
  11. Andreas Gebhardt. Additive Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping - Tooling - Produktion. Hanser, München, 5., neu bearbeitete und erweiterte auflage edition, 2016. URL:
  12. Malte Gebler, Anton J.M. Schoot Uiterkamp, and Cindy Visser. A global sustainability perspective on 3d printing technologies. Energy Policy, 74:158-167, 2014. URL:
  13. Ian Gibson, David Rosen, and Brent Stucker. Additive Manufacturing Technologies. Springer New York, New York, NY, 2015. URL:
  14. Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, and Dusan P. Sekulic. Note on the rate and energy efficiency limits for additive manufacturing. Journal of industrial ecology, 21(S1):S69-S79, 2017. URL:
  15. Timothy J. Horn and Ola L. A. Harrysson. Overview of current additive manufacturing technologies and selected applications. Science Progress, 95(3):255-282, 2012. URL:
  16. Runze Huang, Matthew Riddle, Diane Graziano, Joshua Warren, Sujit Das, Sachin Nimbalkar, Joe Cresko, and Eric Masanet. Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of cleaner production, 135:1559-1570, 2016. URL:
  17. ISO. Energy management systems - measuring energy performance using energy baselines and energy performance indicators (enpi) - general principles and guidance, 2014. URL:
  18. ISO. Iso 17296-2:2015. additive manufacturing - general principles - part 2: Overview of process categories and feedstock, 2015. Google Scholar
  19. ISO. ISO/ASTM 52900:2015 (ASTM F2792) Additive manufacturing - General principles - Terminology. ISO, Geneva, 2015. Google Scholar
  20. ISO. Iso 14955-1:2017 machine tools - environmental evaluation of machine tools - part 1: Design methodology for energy-efficient machine tools, 2017. URL:
  21. ISO. Iso 14955-2:2018 machine tools - environmental evaluation of machine tools - part 2: Methods for measuring energy supplied to machine tools and machine tool components, 2018. URL:
  22. S. Kara and W. Li. Unit process energy consumption models for material removal processes. CIRP annals ... manufacturing technology, 60(1):37-40, 2011. URL:
  23. Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System dynamics: Modeling and simulation of mechatronic systems. Wiley, Hoboken, NJ, 5th ed. edition, 2012. Google Scholar
  24. Karel Kellens, Raya Mertens, Dimos Paraskevas, Wim Dewulf, and Joost R. Duflou. Environmental impact of additive manufacturing processes: Does am contribute to a more sustainable way of part manufacturing? Procedia CIRP, 61:582-587, 2017. URL:
  25. Karel Kellens, Renaldi Renaldi, Wim Dewulf, Jean-pierre Kruth, and Joost R. Duflou. Environmental impact modeling of selective laser sintering processes. Rapid prototyping journal, 20(6):459-470, 2014. URL:
  26. Maija Leino, Joonas Pekkarinen, and Risto Soukka. The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing - enabling circular economy. Physics Procedia, 83:752-760, 2016. URL:
  27. W. R. Morrow, H. Qi, I. Kim, J. Mazumder, and S. J. Skerlos. Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of cleaner production, 15(10):932-943, 2007. URL:
  28. Netfabb. Connected software for additive manufacturing, design, and simulation, 2019. URL:
  29. Henri Paris, Hossein Mokhtarian, Eric Coatanéa, Matthieu Museau, and Inigo Flores Ituarte. Comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Annals, 65(1):29-32, 2016. URL:
  30. Tao Peng, Karel Kellens, Renzhong Tang, Chao Chen, and Gang Chen. Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Additive manufacturing, 21:694-704, 2018. URL:
  31. Onno Ponfoort. Successfull business models for 3D printing: Seizing opportunities with a game changing technology. [Berenschot], [Utrecht], 2014. Google Scholar
  32. Nicolas Serres, Dorian Tidu, Simon Sankare, and Françoise Hlawka. Environmental comparison of meso-clad process and conventional machining implementing life cycle assessment. Journal of cleaner production, 19(9-10):1117-1124, 2011. URL:
  33. Ultimaker. Technical data sheet pla, 2018. URL:
  34. Ultimaker Cura. 3d printing software for a powerful production workflow, 2019. URL:
  35. Thao van Le, Henri Paris, and Guillaume Mandil. Environmental impact assessment of an innovative strategy based on an additive and subtractive manufacturing combination. Journal of cleaner production, 164:508-523, 2017. URL:
  36. VDI e.V. Vdi 3405: Additive fertigungsverfahren grundlagen, begriffe, verfahrensbeschreibungen, 2014. Google Scholar
  37. E. Westkämper, Alting, and Arndt. Life cycle management and assessment: Approaches and visions towards sustainable manufacturing (keynote paper). CIRP Annals, 49(2):501-526, 2000. URL:
  38. Terry Wohlers and Robert Ian Campbell. Wohlers report 2019-3D printing and additive manufacturing state of the industry. Wohlers Associates, Fort Collins, Colo., 2019. Google Scholar
  39. Li Yi, Moritz Glatt, Tai-Yen Thomas Kuo, Ankyd Ji, Bahram Ravani, and Jan C. Aurich. A method for energy modeling and simulation implementation of machine tools of selective laser melting. Journal of cleaner production, 263:121282, 2020. URL:
  40. Li Yi, Bahram Ravani, and Jan C. Aurich. Development and validation of an energy simulation for a desktop additive manufacturing system. Additive manufacturing, 2019. URL:
  41. YOKOGAWA. Wt 1800e high-performance power analyzer, 2019. URL: