Is Smaller Always Better? - Evaluating Video Compression Techniques for Simulation Ensembles

Authors Patrick Ruediger , Christoph Garth, Hans Hagen, Heike Leitte



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.10.pdf
  • Filesize: 7.17 MB
  • 18 pages

Document Identifiers

Author Details

Patrick Ruediger
  • Visual Information Analysis Group, Technische Universität Kaiserslautern, Germany
Christoph Garth
  • Scientific Visualization Group, Technische Universität Kaiserslautern, Germany
Hans Hagen
  • Computergraphics and HCI Group, Technische Universität Kaiserslautern, Germany
Heike Leitte
  • Visual Information Analysis Group, Technische Universität Kaiserslautern, Germany

Cite As Get BibTex

Patrick Ruediger, Christoph Garth, Hans Hagen, and Heike Leitte. Is Smaller Always Better? - Evaluating Video Compression Techniques for Simulation Ensembles. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/OASIcs.iPMVM.2020.10

Abstract

We provide an evaluation of the applicability of video compression techniques for compressing visualization image databases that are often used for in situ visualization. Considering relevant practical implementation aspects, we identify relevant compression parameters, and evaluate video compression for several test cases, involving several data sets and visualization methods; we use three different video codecs. To quantify the benefits and drawbacks of video compression, we employ metrics for image quality, compression rate, and performance. The experiments discussed provide insight into good choices of parameter values, working well in the considered cases.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Image compression
  • Applied computing → Physics
  • Applied computing → Engineering
Keywords
  • Image Database
  • CinemaDB
  • Video Compression
  • Evaluation
  • Benchmark
  • In-situ

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. James Ahrens, Sébastien Jourdain, Patrick O'Leary, John Patchett, David H. Rogers, and Mark Petersen. An image-based approach to extreme scale in situ visualization and analysis. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '14, pages 424-434, Piscataway, NJ, USA, 2014. IEEE Press. URL: https://doi.org/10.1109/SC.2014.40.
  2. Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O'Leary, Kenneth Moreland, Nathan Fabian, and Jeffrey Mauldin. Paraview catalyst: Enabling in situ data analysis and visualization. In Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pages 25-29. ACM, 2015. Google Scholar
  3. A. H. Baker, D. M. Hammerling, S. A. Mickelson, H. Xu, M. B. Stolpe, P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe, F. De Simone, F. Carbone, C. N. Gencarelli, J. M. Dennis, J. E. Kay, and P. Lindstrom. Evaluating lossy data compression on climate simulation data within a large ensemble. Geoscientific Model Development, 9(12):4381-4403, 2016. URL: https://doi.org/10.5194/gmd-9-4381-2016.
  4. Allison H Baker, Dorit M. Hammerling, and Terece L. Turton. Evaluating Image Quality Measures to Assess the Impact of Lossy Data Compression Applied to Climate Simulation Data. Computer Graphics Forum, 2019. Google Scholar
  5. Allison H. Baker, Dorit M. Hammerling, and Terece L. Turton. Evaluating Image Quality Measures to Assess the Impact of Lossy Data Compression Applied to Climate Simulation Data. Computer Graphics Forum, 2019. Google Scholar
  6. Janine C. Bennett, Hank Childs, Christoph Garth, and Bernd Hentschel. In Situ Visualization for Computational Science (Dagstuhl Seminar 18271). Dagstuhl Reports, 8(7):1-43, 2019. URL: https://doi.org/10.4230/DagRep.8.7.1.
  7. Anne S. Berres, Terece L. Turton, Mark Petersen, David H. Rogers, and James P. Ahrens. Video Compression for Ocean Simulation Image Databases, 2017. URL: https://doi.org/10.2312/envirvis.20171104.
  8. Tim Biedert and Christoph Garth. Contour tree depth images for large data visualization. In Eurographics Symposium on Parallel Graphics and Visualization, Cagliari, Sardinia, Italy, May 25 - 26, 2015., pages 77-86, 2015. URL: https://doi.org/10.2312/pgv.20151158.
  9. Tim Biedert, Peter Messmer, Thomas Fogal, and Christoph Garth. Hardware-accelerated multi-tile streaming for realtime remote visualization. In EGPGV 2018: Eurographics Symposium on Parallel Graphics and Visualization, Brno, Czech Republic, June 4, 2018, pages 33-43, 2018. URL: https://doi.org/10.2312/pgv.20181093.
  10. Joey Blake. FFmpeg preset files. Contribute to joeyblake/FFmpeg-Presets development by creating an account on GitHub, May 2019. original-date: 2010-09-12T13:01:27Z. URL: https://github.com/joeyblake/FFmpeg-Presets.
  11. Benjamin Bross, Mauricio Alvarez-Mesa, Valeri George, Chi Ching Chi, Tobias Mayer, Ben H. H. Juurlink, and Thomas Schierl. Hevc real-time decoding. In Optics & Photonics - Optical Engineering + Applications, 2013. Google Scholar
  12. David Ellsworth, Bryan Green, Chris Henze, Patrick Moran, and Timothy Sandstrom. Concurrent visualization in a production supercomputing environment. IEEE Transactions on Visualization and Computer Graphics, 12(5):997-1004, 2006. Google Scholar
  13. H. Hagen F. Claus, F.-A. Rupprecht. Online simulation considering production uncertainties to improve assembly quality. In NAFEMS World Congress. NAFEMS, 2019. URL: https://www.nafems.org/publications/resource_center/nwc_19_356/.
  14. FFmpeg Developers. Ffmpeg. URL: https://ffmpeg.org/.
  15. Adrian Grange, Peter de Rivaz, and Jonathan Hunt. VP9 Bitstream & Decoding Process Specification v0.6, 2016. Google Scholar
  16. M. Hummel, R. Bujack, K. I. Joy, and C. Garth. Error estimates for lagrangian flow field representations. In Proceedings of the Eurographics / IEEE VGTC Conference on Visualization: Short Papers, EuroVis '16, pages 7-11, Goslar Germany, Germany, 2016. Eurographics Association. URL: https://doi.org/10.2312/eurovisshort.20161153.
  17. Akira Kageyama and Tomoki Yamada. An approach to exascale visualization: Interactive viewing of in-situ visualization. Computer Physics Communications, 185(1):79-85, 2014. Google Scholar
  18. S. Li, N. Marsaglia, C. Garth, J. Woodring, J. Clyne, and H. Childs. Data reduction techniques for simulation, visualization and data analysis. Computer Graphics Forum, 37(6):422-447, 2018. URL: https://doi.org/10.1111/cgf.13336.
  19. Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions on visualization and computer graphics, 20(12):2674-2683, 2014. Google Scholar
  20. Jonas Lukasczyk, Eric Kinner, James Ahrens, Heike Leitte, and Christoph Garth. A View-Approximation Oriented Image Database Generation Approach. IEEE 8th Symposium on Large Data Analysis and Visualization(LDAV), 2018, page 11, 2018. Google Scholar
  21. K. Ma. In situ visualization at extreme scale: Challenges and opportunities. IEEE Computer Graphics and Applications, 29(6):14-19, November 2009. URL: https://doi.org/10.1109/MCG.2009.120.
  22. Guy M. Morton. A computer oriented geodetic data base and a new technique in file sequencing. International Business Machines Company, 1966. Google Scholar
  23. Patrick O’Leary, James Ahrens, Sébastien Jourdain, Scott Wittenburg, David H. Rogers, and Mark Petersen. Cinema image-based in situ analysis and visualization of mpas-ocean simulations. Parallel Computing, 55:43-48, 2016. Visualization and Data Analytics for Scientific Discovery. URL: https://doi.org/10.1016/j.parco.2015.10.005.
  24. Hamid R. Sheikh and Alan C. Bovik. Image information and visual quality. In 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 3, pages iii-709. IEEE, 2004. Google Scholar
  25. Bong-Soo Sohn, Chandrajit Bajaj, and Vinay Siddavanahalli. Volumetric video compression for interactive playback. Computer Vision and Image Understanding, 96(3):435-452, 2004. Google Scholar
  26. Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra. The h.264/avc advanced video coding standard: overview and introduction to the fidelity range extensions. In SPIE Optics + Photonics, 2004. Google Scholar
  27. Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet, and Michael Michaux. The Topology ToolKit. IEEE transactions on visualization and computer graphics, 24(1):832-842, 2018. Google Scholar
  28. Anna Tikhonova, Carlos D. Correa, and Kwan-Liu Ma. Explorable images for visualizing volume data. In IEEE Pacific Visualization Symposium PacificVis 2010, Taipei, Taiwan,March 2-5, 2010, pages 177-184, 2010. URL: https://doi.org/10.1109/PACIFICVIS.2010.5429595.
  29. Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, volume 2, pages 1398-1402. Ieee, 2003. Google Scholar
  30. J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle, and J. Ahrens. Revisiting wavelet compression for large-scale climate data using jpeg 2000 and ensuring data precision. In 2011 IEEE Symposium on Large Data Analysis and Visualization, pages 31-38, October 2011. URL: https://doi.org/10.1109/LDAV.2011.6092314.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail