Physics Simulation of Material Flows: Effects on the Performance of a Production System

Authors Moritz Glatt , Bahram Ravani, Jan C. Aurich



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.15.pdf
  • Filesize: 1.67 MB
  • 26 pages

Document Identifiers

Author Details

Moritz Glatt
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Bahram Ravani
  • Department of Mechanical and Aerospace Engineering, University of California at Davis, CA, USA
Jan C. Aurich
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany

Cite AsGet BibTex

Moritz Glatt, Bahram Ravani, and Jan C. Aurich. Physics Simulation of Material Flows: Effects on the Performance of a Production System. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 15:1-15:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/OASIcs.iPMVM.2020.15

Abstract

In cyber-physical production systems, material flows show complexity due to varying physical aspects of transported work pieces and autonomously selected transport routes. As a result, physically induced disturbances that may lead to delays or damages are hard to predict. The on-line usage of a physics engine offers potential to derive material flow parameters that enable safe transports with optimized accelerations. Previous work showed the feasibility of this approach and potential operational benefits through faster material flows. In consequence, the scope of this paper is to apply discrete-event simulation to investigate whether physics simulation of material flows leads to positive impacts on production system performance indicators such as throughput times and capacity utilization. The results indicate that increased velocity and acceleration of material flows can positively influence these indicators. In consequence, applying physics simulation to ensure safe transports with such high velocities and accelerations can improve the overall performance of a production system.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Modeling and simulation
Keywords
  • Physics simulation
  • discrete-event simulation
  • cyber-physical production systems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Bugra Alkan and Robert Harrison. A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems, 53:18-31, 2019. URL: https://doi.org/10.1016/j.jmsy.2019.09.001.
  2. Dieter Arnold. Intralogistik: Potentiale, Perspektiven, Prognosen. VDI-Buch. Springer-Verlag GmbH, Berlin Heidelberg, 2006. URL: https://doi.org/10.1007/978-3-540-29658-4.
  3. Dieter Arnold and Kai Furmans. Materialfluss in Logistiksystemen. VDI-Buch. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 6., erweiterte aufl. edition, 2009. URL: https://doi.org/10.1007/978-3-642-01405-5.
  4. Jan Bender, Kenny Erleben, and Jeff Trinkle. Interactive simulation of rigid body dynamics in computer graphics. Computer Graphics Forum, 33(1):246-270, 2014. URL: https://doi.org/10.1111/cgf.12272.
  5. BOSCH Rexroth. Transfer system ts 2plus. URL: https://www.boschrexroth.com/en/xc/products/product-groups/assembly-technology/topics/transfer-systems/transfer-system-ts-2plus/index.
  6. Manfred Broy. Cyber-Physical Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. URL: https://doi.org/10.1007/978-3-642-14901-6.
  7. Erwin Coumans and Yunfei Bai. Pybullet: A python module for physics simulation for games, robotics and machine learning, 2019. URL: http://pybullet.org.
  8. Klaus Dröder, Franz Dietrich, Christian Löchte, and Jürgen Hesselbach. Model based design of process-specific handling tools for workpieces with many variants in shape and material. CIRP Annals, 65(1):53-56, 2016. URL: https://doi.org/10.1016/j.cirp.2016.04.109.
  9. David H. Eberly. Game physics. Interactive 3D technology series. Morgan Kaufmann/Elsevier, Amsterdam, 2. ed. edition, 2010. URL: http://www.eblib.com/patron/FullRecord.aspx?p=648814.
  10. H. A. ElMaraghy and M. Manns. Transition of interarrival time patterns between automated and manual configurations of assembly systems. Journal of Manufacturing Systems, 26(1):1-11, 2007. URL: https://doi.org/10.1016/j.jmsy.2008.01.001.
  11. Hoda ElMaraghy and Alessandra Caggiano. Flexible manufacturing system. In Luc Laperrière and Gunther Reinhart, editors, CIRP encyclopedia of production engineering, Springer reference, pages 524-530. Springer, Berlin, 2014. URL: https://doi.org/10.1007/978-3-642-20617-7_6554.
  12. Behzad Esmaeilian, Sara Behdad, and Ben Wang. The evolution and future of manufacturing: A review. Journal of Manufacturing Systems, 39:79-100, 2016. URL: https://doi.org/10.1016/j.jmsy.2016.03.001.
  13. Marc-André Filz, Johann Gerberding, Christoph Herrmann, and Sebastian Thiede. Analyzing different material supply strategies in matrix-structured manufacturing systems. Procedia CIRP, 81:1004-1009, 2019. URL: https://doi.org/10.1016/j.procir.2019.03.242.
  14. Marc-André Filz, Christoph Herrmann, and Sebastian Thiede. Simulation-based data analysis to support the planning of flexible manufacturing systems. SNE Simulation Notes Europe, 30(4):131-137, 2020. URL: https://doi.org/10.11128/sne.30.tn.10531.
  15. Moritz Glatt and Jan C. Aurich. Physiksimulation cyber-physischer produktionssysteme: Planung und steuerung cyber-physischer produktionssysteme durch physikalische simulation. wt Werkstatttechnik online, 108(4), 2018. Google Scholar
  16. Moritz Glatt and Jan C. Aurich. Physical modeling of material flows in cyber-physical production systems. Procedia Manufacturing, 28:10-17, 2019. URL: https://doi.org/10.1016/j.promfg.2018.12.003.
  17. Moritz Glatt, Georg Kasakow, and Jan C. Aurich. Combining physical simulation and discrete-event material flow simulation. Procedia CIRP, 72:420-425, 2018. URL: https://doi.org/10.1016/j.procir.2018.03.054.
  18. Moritz Glatt, Daniel Kull, Bahram Ravani, and Jan C. Aurich. Validation of a physics engine for the simulation of material flows in cyber-physical production systems. Procedia CIRP, 81:494-499, 2019. URL: https://doi.org/10.1016/j.procir.2019.03.125.
  19. Moritz Glatt, Chantal Sinnwell, Li Yi, Sean Donohoe, Bahram Ravani, and Jan C. Aurich. Modeling and implementation of a digital twin of material flows based on physics simulation. Journal of Manufacturing Systems, 2020. URL: https://doi.org/10.1016/j.jmsy.2020.04.015.
  20. Daniel Hofmann and Gunther Reinhart. Raising accuracy in physically based simulations through scaling equations. Journal of Computing and Information Science in Engineering, 13(4):435, 2013. URL: https://doi.org/10.1115/1.4025590.
  21. S. Hoher, P. Schindler, S. Göttlich, V. Schleper, and S. Röck. System dynamic models and real-time simulation of complex material flow systems. In Hoda A. ElMaraghy, editor, Enabling Manufacturing Competitiveness and Economic Sustainability, pages 316-321. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2012. URL: https://doi.org/10.1007/978-3-642-23860-4_52.
  22. Danny J. Johnson. A framework for reducing manufacturing throughput time. Journal of Manufacturing Systems, 22(4):283-298, 2003. URL: https://doi.org/10.1016/S0278-6125(03)80009-2.
  23. Laurie King Rogers. Automatic guided vehicles basics. Modern Materials Handling, pages 36-39, 2011. Google Scholar
  24. Ravindra Kumar, Abid Haleem, Suresh K. Garg, and Rajesh K. Singh. Automated guided vehicle configurations in flexible manufacturing systems: a comparative study. International Journal of Industrial and Systems Engineering, 21(2):207, 2015. URL: https://doi.org/10.1504/IJISE.2015.071510.
  25. Averill M. Law. Simulation modeling and analysis. McGraw-Hill series in industrial engineering and management science. McGraw-Hill Education, New York, NY, 5. ed. edition, 2015. Google Scholar
  26. Ian Millington. Game Physics Engine Development: How to Build a Robust Commercial-Grade Physics Engine for your Game. CRC Press, London, 2nd ed. edition, 2010. URL: http://gbv.eblib.com/patron/FullRecord.aspx?p=4205386.
  27. L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda. Cyber-physical systems in manufacturing. CIRP Annals - Manufacturing Technology, 65(2):621-641, 2016. URL: https://doi.org/10.1016/j.cirp.2016.06.005.
  28. Dimitris Mourtzis. Simulation in the design and operation of manufacturing systems: state of the art and new trends. International Journal of Production Research, 58(7):1927-1949, 2020. URL: https://doi.org/10.1080/00207543.2019.1636321.
  29. Dimitris Mourtzis, Nikolaos Papakostas, Dimitris Mavrikios, Sotiris Makris, and Kosmas Alexopoulos. The role of simulation in digital manufacturing: Applications and outlook. International Journal of Computer Integrated Manufacturing, 28(1):3-24, 2014. URL: https://doi.org/10.1080/0951192X.2013.800234.
  30. Ashkan Negahban and Jeffrey S. Smith. Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2):241-261, 2014. URL: https://doi.org/10.1016/j.jmsy.2013.12.007.
  31. Luis Rabelo, Magdy Helal, Albert Jones, and Hyeung-Sik Min. Enterprise simulation: a hybrid system approach. International Journal of Computer Integrated Manufacturing, 18(6):498-508, 2005. URL: https://doi.org/10.1080/09511920400030138.
  32. REFA. Auslastung, 2020. URL: https://refa-consulting.de/refa-lexikon/a/auslastung.
  33. Gunther Reinhart and Frédéric-Felix Lacour. Physically based virtual commissioning of material flow intensive manufacturing plants. In Michael F. Zäh, editor, 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2009), pages 377-386, München, 2009. Herbert Utz Verlag. Google Scholar
  34. Frank Riley. The Electronics Assembly Handbook. Springer, Berlin and Heidelberg, 1988. URL: https://doi.org/10.1007/978-3-662-13161-9.
  35. SIEMENS. Use plant simulation and throughput optimization to improve manufacturing performance, 2020. URL: https://www.plm.automation.siemens.com/global/de/products/manufacturing-planning/plant-simulation-throughput-optimization.html.
  36. Stein Automation GmbH & Co. KG. Modular und vernetzt in die montage der zukunft. Automationspraxis, 2018. URL: https://www.stein-automation.de/wp-content/uploads/Montage-der-Zukunft_Titelstory_automationspraxis-7_2018.pdf.
  37. Matthew P. Stephens and Fred E. Meyers. Manufacturing facilities design and material handling. Purdue University Press, West Lafayette, Indiana, fifth edition edition, 2013. URL: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=582967.
  38. George Swartz. Forklift safety: A practical guide to preventing powered industrial truck incidents and injuries. Government Institutes, Rockville, MD, 1999. Google Scholar
  39. Insup Um, Hyeonjae Cheon, and Hongchul Lee. The simulation design and analysis of a flexible manufacturing system with automated guided vehicle system. Journal of Manufacturing Systems, 28(4):115-122, 2009. URL: https://doi.org/10.1016/j.jmsy.2010.06.001.
  40. Birgit Vogel-Heuser, Jay Lee, and Paulo Leitão. Agents enabling cyber-physical production systems. at - Automatisierungstechnik, 63(10), 2015. URL: https://doi.org/10.1515/auto-2014-1153.
  41. Shiyong Wang, Jiafu Wan, Di Li, and Chunhua Zhang. Implementing smart factory of industrie 4.0: An outlook. International Journal of Distributed Sensor Networks, 12(1):3159805, 2016. URL: https://doi.org/10.1155/2016/3159805.
  42. Sigrid Wenzel. Qualitätskriterien für die Simulation in Produktion und Logistik: Planung und Durchführung von Simulationsstudien. VDI-Buch. Springer, Berlin, 2008. URL: http://deposit.dnb.de/cgi-bin/dokserv?id=2814919&prov=M&dok_var=1&dok_ext=htm.
  43. H.-P. Wiendahl, H. A. ElMaraghy, P. Nyhuis, M. F. Zäh, H.-H. Wiendahl, N. Duffie, and M. Brieke. Changeable manufacturing - classification, design and operation. CIRP Annals, 56(2):783-809, 2007. URL: https://doi.org/10.1016/j.cirp.2007.10.003.
  44. Michael F. Zäh, Michael Spitzweg, and Frédéric-Felix Lacour. Application of a physical model for the simulation of the material flow of a manufacturing plant (einsatz eines physikmodells zur simulation des materialflusses einer produktionsanlage). it - Information Technology, 50(3):192-198, 2008. URL: https://doi.org/10.1524/itit.2008.0483.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail