Document Open Access Logo

Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities

Authors Jiaoyan Chen , Hang Dong , Janna Hastings , Ernesto Jiménez-Ruiz , Vanessa López , Pierre Monnin , Catia Pesquita , Petr Škoda , Valentina Tamma



PDF
Thumbnail PDF

File

TGDK.1.1.5.pdf
  • Filesize: 0.97 MB
  • 33 pages

Document Identifiers

Author Details

Jiaoyan Chen
  • Department of Computer Science, University of Manchester, UK
  • Department of Computer Science, University of Oxford, UK
Hang Dong
  • Department of Computer Science, University of Oxford, UK
Janna Hastings
  • Institute for Implementation Science in Health Care, University of Zurich, Switzerland
  • School of Medicine, University of St. Gallen, Switzerland
Ernesto Jiménez-Ruiz
  • City, University of London, UK
  • SIRIUS, University of Oslo, Norway
Vanessa López
  • IBM Research Europe, Dublin, Ireland
Pierre Monnin
  • Université Côte d’Azur, Inria, CNRS, I3S, France
Catia Pesquita
  • LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
Petr Škoda
  • Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
Valentina Tamma
  • Department of Computer Science, University of Liverpool, UK

Acknowledgements

We would like to thank Uli Sattler (University of Manchester) for proposing the topic of this paper and Terry Payne (University of Liverpool) for the useful comments on a previous draft. We would also like to thank the TGDK editors in chief for organizing this inaugural issue.

Cite AsGet BibTex

Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 5:1-5:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/TGDK.1.1.5

Abstract

The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.

Subject Classification

ACM Subject Classification
  • Information systems → Graph-based database models
  • Computing methodologies → Knowledge representation and reasoning
  • Applied computing → Life and medical sciences
Keywords
  • Knowledge graphs
  • Life science
  • Knowledge discovery
  • Explainable AI

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach. SW-Store: a vertically partitioned DBMS for Semantic Web data management. The VLDB Journal, 18:385-406, 2009. URL: https://doi.org/10.1007/S00778-008-0125-Y.
  2. Emily Alsentzer, Michelle M. Li, Shilpa N. Kobren, Undiagnosed Diseases Network, Isaac S. Kohane, and Marinka Zitnik. Deep learning for diagnosing patients with rare genetic diseases. medRxiv, 2022. URL: https://doi.org/10.1101/2022.12.07.22283238.
  3. Robert Arp, Barry Smith, and Andrew D. Spear. Building Ontologies With Basic Formal Ontology. The MIT Press, aug 2015. URL: https://doi.org/10.7551/mitpress/9780262527811.001.0001.
  4. Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool for the unification of biology. Nature genetics, 25(1):25-29, 2000. URL: https://doi.org/10.1038/75556.
  5. Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description Logic. Cambridge University Press, Cambridge, 2017. URL: https://doi.org/10.1017/9781139025355.
  6. Nguyen Bach and Sameer Badaskar. A review of relation extraction. Literature review for Language and Statistics II, 2:1-15, 2007. Google Scholar
  7. Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58:82-115, 2020. URL: https://doi.org/10.1016/J.INFFUS.2019.12.012.
  8. Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michał Podstawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases: Analysis and taxonomy of data organization, system designs, and graph queries. ACM Comput. Surv., 2023. URL: https://doi.org/10.1145/3604932.
  9. Olivier Bodenreider. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res., 32(Database-Issue):267-270, 2004. URL: https://doi.org/10.1093/NAR/GKH061.
  10. Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102-2110, feb 2022. URL: https://doi.org/10.1093/BIOINFORMATICS/BTAC020.
  11. Anna Breit, Laura Waltersdorfer, Fajar J. Ekaputra, Marta Sabou, Andreas Ekelhart, Andreea Iana, Heiko Paulheim, Jan Portisch, Artem Revenko, Frank van Harmelen, and Annette ten Teije. Combining machine learning and semantic web: A systematic mapping study. ACM Computing Surveys, 2023. URL: https://doi.org/10.1145/3586163.
  12. Emmanuel Bresso, Pierre Monnin, Cédric Bousquet, François-Élie Calvier, Ndeye Coumba Ndiaye, Nadine Petitpain, Malika Smaïl-Tabbone, and Adrien Coulet. Investigating ADR mechanisms with explainable AI: a feasibility study with knowledge graph mining. BMC Medical Informatics Decis. Mak., 21(1):171, 2021. URL: https://doi.org/10.1186/S12911-021-01518-6.
  13. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS'20, Red Hook, NY, USA, 2020. Curran Associates Inc. URL: https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.
  14. Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1721-1730, 2015. URL: https://doi.org/10.1145/2783258.2788613.
  15. Ricardo MS Carvalho, Daniela Oliveira, and Catia Pesquita. Knowledge Graph Embeddings for ICU readmission prediction. BMC Medical Informatics and Decision Making, 23(1):12, 2023. URL: https://doi.org/10.1186/S12911-022-02070-7.
  16. Javier Castell-Díaz, Jose Antonio Miñarro-Giménez, and Catalina Martínez-Costa. Supporting SNOMED CT postcoordination with knowledge graph embeddings. Journal of Biomedical Informatics, 139:104297, 2023. URL: https://doi.org/10.1016/J.JBI.2023.104297.
  17. J Harry Caufield, Harshad Hegde, Vincent Emonet, Nomi L Harris, Marcin P Joachimiak, Nicolas Matentzoglu, HyeongSik Kim, Sierra AT Moxon, Justin T Reese, Melissa A Haendel, et al. Structured prompt interrogation and recursive extraction of semantics (spires): A method for populating knowledge bases using zero-shot learning. arXiv preprint arXiv:2304.02711, 2023. URL: https://doi.org/10.48550/ARXIV.2304.02711.
  18. Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545, 2020. URL: https://doi.org/10.18653/v1/2020.acl-main.617.
  19. Payal Chandak, Kexin Huang, and Marinka Zitnik. Building a knowledge graph to enable precision medicine. Scientific Data, 10(1):67, 2023. URL: https://doi.org/10.1038/s41597-023-01960-3.
  20. Shruthi Chari, Oshani Seneviratne, Daniel M. Gruen, Morgan A. Foreman, Amar K. Das, and Deborah L. McGuinness. Explanation ontology: A model of explanations for user-centered AI. In Jeff Z. Pan, Valentina A. M. Tamma, Claudia d'Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The Semantic Web - ISWC 2020 - 19th International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part II, volume 12507 of Lecture Notes in Computer Science, pages 228-243, 2020. URL: https://doi.org/10.1007/978-3-030-62466-8_15.
  21. Ching-Hua Chen, Daniel Gruen, Jonathan Harris, James Hendler, Deborah L McGuinness, Marco Monti, Nidhi Rastogi, Oshani Seneviratne, and Mohammed J Zaki. Semantic technologies for clinically relevant personal health applications. In Personal Health Informatics: Patient Participation in Precision Health, pages 199-220. Cham, 2022. URL: https://doi.org/10.1007/978-3-031-07696-1_10.
  22. Jiaoyan Chen, Yuxia Geng, Zhuo Chen, Jeff Z Pan, Yuan He, Wen Zhang, Ian Horrocks, and Huajun Chen. Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey. Proceedings of the IEEE, 2023. URL: https://doi.org/10.1109/JPROC.2023.3279374.
  23. Jiaoyan Chen, Yuan He, Yuxia Geng, Ernesto Jiménez-Ruiz, Hang Dong, and Ian Horrocks. Contextual semantic embeddings for ontology subsumption prediction. World Wide Web, pages 1-23, 2023. URL: https://doi.org/10.1007/S11280-023-01169-9.
  24. Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Xi Chen, and Erik Bryhn Myklebust. An assertion and alignment correction framework for large scale knowledge bases. Semantic Web, 14(1):29-53, 2023. URL: https://doi.org/10.3233/SW-210448.
  25. Mingyang Chen, Wen Zhang, Zonggang Yuan, Yantao Jia, and Huajun Chen. Federated knowledge graph completion via embedding-contrastive learning. Knowledge-Based Systems, 252:109459, 2022. URL: https://doi.org/10.1016/J.KNOSYS.2022.109459.
  26. Yong Chen, Xinkai Ge, Shengli Yang, Linmei Hu, Jie Li, and Jinwen Zhang. A survey on multimodal knowledge graphs: Construction, completion and applications. Mathematics, 11(8):1815, 2023. URL: https://doi.org/10.3390/math11081815.
  27. E. Coiera. Guide to Health Informatics, chapter Chapter 23 Healthcare terminologies and classification systems, pages 381-399. CRC Press, Taylor & Francis Group, Boca Raton, 2015. URL: https://doi.org/10.1201/b13617.
  28. The Gene Ontology Consortium, Suzi A Aleksander, James Balhoff, Seth Carbon, J Michael Cherry, Harold J Drabkin, Dustin Ebert, Marc Feuermann, Pascale Gaudet, Nomi L Harris, David P Hill, Raymond Lee, Huaiyu Mi, Sierra Moxon, Christopher J Mungall, Anushya Muruganugan, Tremayne Mushayahama, Paul W Sternberg, Paul D Thomas, Kimberly Van Auken, Jolene Ramsey, Deborah A Siegele, Rex L Chisholm, Petra Fey, Maria Cristina Aspromonte, Maria Victoria Nugnes, Federica Quaglia, Silvio Tosatto, Michelle Giglio, Suvarna Nadendla, Giulia Antonazzo, Helen Attrill, Gil dos Santos, Steven Marygold, Victor Strelets, Christopher J Tabone, Jim Thurmond, Pinglei Zhou, Saadullah H Ahmed, Praoparn Asanitthong, Diana Luna Buitrago, Meltem N Erdol, Matthew C Gage, Mohamed Ali Kadhum, Kan Yan Chloe Li, Miao Long, Aleksandra Michalak, Angeline Pesala, Armalya Pritazahra, Shirin C C Saverimuttu, Renzhi Su, Kate E Thurlow, Ruth C Lovering, Colin Logie, Snezhana Oliferenko, Judith Blake, Karen Christie, Lori Corbani, Mary E Dolan, Harold J Drabkin, David P Hill, Li Ni, Dmitry Sitnikov, Cynthia Smith, Alayne Cuzick, James Seager, Laurel Cooper, Justin Elser, Pankaj Jaiswal, Parul Gupta, Pankaj Jaiswal, Sushma Naithani, Manuel Lera-Ramirez, Kim Rutherford, Valerie Wood, Jeffrey L De Pons, Melinda R Dwinell, G Thomas Hayman, Mary L Kaldunski, Anne E Kwitek, Stanley J F Laulederkind, Marek A Tutaj, Mahima Vedi, Shur-Jen Wang, Peter D’Eustachio, Lucila Aimo, Kristian Axelsen, Alan Bridge, Nevila Hyka-Nouspikel, Anne Morgat, Suzi A Aleksander, J Michael Cherry, Stacia R Engel, Kalpana Karra, Stuart R Miyasato, Robert S Nash, Marek S Skrzypek, Shuai Weng, Edith D Wong, Erika Bakker, Tanya Z Berardini, Leonore Reiser, Andrea Auchincloss, Kristian Axelsen, Ghislaine Argoud-Puy, Marie-Claude Blatter, Emmanuel Boutet, Lionel Breuza, Alan Bridge, Cristina Casals-Casas, Elisabeth Coudert, Anne Estreicher, Maria Livia Famiglietti, Marc Feuermann, Arnaud Gos, Nadine Gruaz-Gumowski, Chantal Hulo, Nevila Hyka-Nouspikel, Florence Jungo, Philippe Le Mercier, Damien Lieberherr, Patrick Masson, Anne Morgat, Ivo Pedruzzi, Lucille Pourcel, Sylvain Poux, Catherine Rivoire, Shyamala Sundaram, Alex Bateman, Emily Bowler-Barnett, Hema Bye-A-Jee, Paul Denny, Alexandr Ignatchenko, Rizwan Ishtiaq, Antonia Lock, Yvonne Lussi, Michele Magrane, Maria J Martin, Sandra Orchard, Pedro Raposo, Elena Speretta, Nidhi Tyagi, Kate Warner, Rossana Zaru, Alexander D Diehl, Raymond Lee, Juancarlos Chan, Stavros Diamantakis, Daniela Raciti, Magdalena Zarowiecki, Malcolm Fisher, Christina James-Zorn, Virgilio Ponferrada, Aaron Zorn, Sridhar Ramachandran, Leyla Ruzicka, and Monte Westerfield. The Gene Ontology knowledgebase in 2023. Genetics, 224(1):iyad031, mar 2023. URL: https://doi.org/10.1093/genetics/iyad031.
  29. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1):D506-D515, nov 2018. URL: https://doi.org/10.1093/NAR/GKY1049.
  30. David Jaime Tena Cucala, Bernardo Cuenca Grau, Egor V Kostylev, and Boris Motik. Explainable GNN-Based Models over Knowledge Graphs. In International Conference on Learning Representations, 2021. URL: https://openreview.net/forum?id=CrCvGNHAIrz.
  31. Shumin Deng, Chengming Wang, Zhoubo Li, Ningyu Zhang, Zelin Dai, Hehong Chen, Feiyu Xiong, Ming Yan, Qiang Chen, Mosha Chen, et al. Construction and applications of billion-scale pre-trained multimodal business knowledge graph. In 2023 IEEE 39th International Conference on Data Engineering (ICDE), pages 2988-3002. IEEE, 2023. URL: https://doi.org/10.1109/ICDE55515.2023.00229.
  32. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019. URL: https://doi.org/10.18653/V1/N19-1423.
  33. Ivan Donadello, Mauro Dragoni, and Claudio Eccher. Persuasive explanation of reasoning inferences on dietary data. In Joint Proceedings of PROFILES 2019 and SEMEX 2019, 1st Workshop on Semantic Explainability (SemEx 2019), co-located with the 18th International Semantic Web Conference (ISWC '19), PROFILES-SEMEX 2019, pages 46-61. CEUR-WS, 2019. URL: http://ceur-ws.org/Vol-2465/semex_paper2.pdf.
  34. Hang Dong, Jiaoyan Chen, Yuan He, and Ian Horrocks. Ontology enrichment from texts: A biomedical dataset for concept discovery and placement. In Proceedings of the 32nd ACM International Conference on Information & Knowledge Management, 2023. URL: https://doi.org/10.1145/3583780.3615126.
  35. Hang Dong, Jiaoyan Chen, Yuan He, Yinan Liu, and Ian Horrocks. Reveal the unknown: Out-of-knowledge-base mention discovery with entity linking. In Proceedings of the 32nd ACM International Conference on Information & Knowledge Management, 2023. URL: https://doi.org/10.1145/3583780.3615036.
  36. Hang Dong, Matúš Falis, William Whiteley, Beatrice Alex, Joshua Matterson, Shaoxiong Ji, Jiaoyan Chen, and Honghan Wu. Automated clinical coding: what, why, and where we are? NPJ digital medicine, 5(1):159, 2022. URL: https://doi.org/10.1038/S41746-022-00705-7.
  37. Hang Dong, Víctor Suárez-Paniagua, Huayu Zhang, Minhong Wang, Arlene Casey, Emma Davidson, Jiaoyan Chen, Beatrice Alex, William Whiteley, and Honghan Wu. Ontology-driven and weakly supervised rare disease identification from clinical notes. BMC Medical Informatics and Decision Making, 23(1):1-17, 2023. URL: https://doi.org/10.1186/S12911-023-02181-9.
  38. Kevin Donnelly et al. SNOMED-CT: The advanced terminology and coding system for ehealth. In Medical and Care Compunetics 3, volume 121 of Studies in health technology and informatics, pages 279-290. IOS Press, 2006. Google Scholar
  39. Zlatan Dragisic, Valentina Ivanova, Huanyu Li, and Patrick Lambrix. Experiences from the anatomy track in the ontology alignment evaluation initiative. J. Biomed. Semant., 8(1):56:1-56:28, 2017. URL: https://doi.org/10.1186/S13326-017-0166-5.
  40. Juan M Durán. Dissecting scientific explanation in ai (sxai): A case for medicine and healthcare. Artificial Intelligence, 297:103498, 2021. URL: https://doi.org/10.1016/J.ARTINT.2021.103498.
  41. Artur S d’Avila Garcez, Luís C Lamb, and Dov M Gabbay. Neural-symbolic learning systems, pages 35-54. Springer, 2009. URL: https://doi.org/10.1007/978-1-4471-0211-3.
  42. Joakim Edin, Alexander Junge, Jakob D. Havtorn, Lasse Borgholt, Maria Maistro, Tuukka Ruotsalo, and Lars Maaløe. Automated medical coding on MIMIC-III and MIMIC-IV: A critical review and replicability study. CoRR, abs/2304.10909, 2023. URL: https://doi.org/10.48550/ARXIV.2304.10909.
  43. Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In Michael Martin, Martí Cuquet, and Erwin Folmer, editors, Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS'16) co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12-15, 2016, volume 1695 of CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL: https://ceur-ws.org/Vol-1695/paper4.pdf.
  44. Daniel Faria, Ernesto Jiménez-Ruiz, Catia Pesquita, Emanuel Santos, and Francisco M. Couto. Towards Annotating Potential Incoherences in BioPortal Mappings. In Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vrandecic, Paul Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, editors, The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference. Proceedings, Part II, volume 8797 of Lecture Notes in Computer Science, pages 17-32, 2014. URL: https://doi.org/10.1007/978-3-319-11915-1_2.
  45. Mariano Fernandez, Asuncion Gomez-Perez, and Natalia Juristo. Methontology: from ontological art towards ontological engineering. In Proc. of the AAAI97 Spring Symposium Series on Ontological Engineering, pages 33-40. Stanford, USA, 1997. Google Scholar
  46. Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plexousakis, and Grigoris Antoniou. Ontology change: classification and survey. Knowl. Eng. Rev., 23(2):117-152, 2008. URL: https://doi.org/10.1017/S0269888908001367.
  47. Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An Evolving Query Language for Property Graphs. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD '18, pages 1433-1445, 2018. URL: https://doi.org/10.1145/3183713.3190657.
  48. Katrin Fundel, Robert Küffner, and Ralf Zimmer. Relex—relation extraction using dependency parse trees. Bioinformatics, 23(3):365-371, 2007. URL: https://doi.org/10.1093/BIOINFORMATICS/BTL616.
  49. Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy B R Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L Blundell, Michael M Bronstein, and Jake P Taylor-King. Utilizing graph machine learning within drug discovery and development. Briefings in Bioinformatics, 22(6):bbab159, may 2021. URL: https://doi.org/10.1093/BIB/BBAB159.
  50. Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Overington. Chembl: A large-scale bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100-D1107, 2012. URL: https://doi.org/10.1093/NAR/GKR777.
  51. David Geleta, Andriy Nikolov, Gavin Edwards, Anna Gogleva, Richard Jackson, Erik Jansson, Andrej Lamov, Sebastian Nilsson, Marina Pettersson, Vladimir Poroshin, et al. Biological insights knowledge graph: an integrated knowledge graph to support drug development. BioRxiv, pages 2021-10, 2021. URL: https://doi.org/10.1101/2021.10.28.466262.
  52. Aryo Pradipta Gema, Dominik Grabarczyk, Wolf De Wulf, Piyush Borole, Javier Antonio Alfaro, Pasquale Minervini, Antonio Vergari, and Ajitha Rajan. Knowledge graph embeddings in the biomedical domain: Are they useful? a look at link prediction, rule learning, and downstream polypharmacy tasks. arXiv preprint arXiv:2305.19979, 2023. URL: https://doi.org/10.48550/ARXIV.2305.19979.
  53. Martin Glauer, Adel Memariani, Fabian Neuhaus, Till Mossakowski, and Janna Hastings. Interpretable Ontology Extension in Chemistry. Semantic Web Journal, 2022. URL: https://doi.org/10.3233/SW-233183.
  54. Anika Groß, Cédric Pruski, and Erhard Rahm. Evolution of biomedical ontologies and mappings: Overview of recent approaches. Computational and Structural Biotechnology Journal, 14:333-340, 2016. URL: https://doi.org/10.1016/j.csbj.2016.08.002.
  55. Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv., 51(5), aug 2018. URL: https://doi.org/10.1145/3236009.
  56. Ricardo Guimarães and Ana Ozaki. Reasoning in Knowledge Graphs. In International Research School in Artificial Intelligence in Bergen (AIB 2022), volume 99 of Open Access Series in Informatics (OASIcs), pages 2:1-2:31, 2022. URL: https://doi.org/10.4230/OASICS.AIB.2022.2.
  57. Nicholas Halliwell, Fabien Gandon, and Freddy Lécué. User scored evaluation of non-unique explanations for relational graph convolutional network link prediction on knowledge graphs. In Anna Lisa Gentile and Rafael Gonçalves, editors, K-CAP '21: Knowledge Capture Conference, Virtual Event, USA, December 2-3, 2021, pages 57-64, 2021. URL: https://doi.org/10.1145/3460210.3493557.
  58. I. Harrow, R. Balakrishnan, E. Jimenez-Ruiz, S. Jupp, J. Lomax, J. Reed, M. Romacker, C. Senger, A. Splendiani, J. Wilson, and P. Woollard. Ontology mapping for semantically enabled applications. Drug Discovery Today, may 2019. URL: https://doi.org/10.1016/j.drudis.2019.05.020.
  59. Ian Harrow, Ernesto Jiménez-Ruiz, Andrea Splendiani, Martin Romacker, Peter Woollard, Scott Markel, Yasmin Alam-Faruque, Martin Koch, James Malone, and Arild Waaler. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative. J. Biomed. Semant., 8(1):55:1-55:13, 2017. URL: https://doi.org/10.1186/S13326-017-0162-9.
  60. J. Hastings. AI for Scientific Discovery. AI for everything series. CRC Press, Milton, 2023. URL: https://doi.org/10.1201/9781003226642.
  61. Janna Hastings. Primer on Ontologies. In Christophe Dessimoz and Nives Škunca, editors, The Gene Ontology Handbook, volume 1446, pages 3-13. Humana Press, SpringerOpen, New York, New York, NY, 2017. URL: https://doi.org/10.1007/978-1-4939-3743-1_1.
  62. Janna Hastings, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata Kale, Venkatesh Muthukrishnan, Steve Turner, Neil Swainston, Pedro Mendes, and Christoph Steinbeck. Chebi in 2016: Improved services and an expanding collection of metabolites. Nucleic acids research, 44(D1):D1214-D1219, 2016. URL: https://doi.org/10.1093/NAR/GKV1031.
  63. Yuan He, Jiaoyan Chen, Hang Dong, Ian Horrocks, Carlo Allocca, Taehun Kim, and Brahmananda Sapkota. DeepOnto: A Python package for ontology engineering with deep learning. arXiv preprint arXiv:2307.03067, 2023. URL: https://doi.org/10.48550/ARXIV.2307.03067.
  64. Yuan He, Jiaoyan Chen, Hang Dong, Ernesto Jiménez-Ruiz, Ali Hadian, and Ian Horrocks. Machine learning-friendly biomedical datasets for equivalence and subsumption ontology matching. In Ulrike Sattler, Aidan Hogan, C. Maria Keet, Valentina Presutti, João Paulo A. Almeida, Hideaki Takeda, Pierre Monnin, Giuseppe Pirrò, and Claudia d'Amato, editors, The Semantic Web - ISWC 2022 - 21st International Semantic Web Conference, Proceedings, volume 13489 of Lecture Notes in Computer Science, pages 575-591, 2022. URL: https://doi.org/10.1007/978-3-031-19433-7_33.
  65. Yuan He, Jiaoyan Chen, Ernesto Jiménez-Ruiz, Hang Dong, and Ian Horrocks. Language model analysis for ontology subsumption inference. Findings of the Association for Computational Linguistics: ACL 2023, pages 3439-3453, 2023. URL: https://doi.org/10.18653/V1/2023.FINDINGS-ACL.213.
  66. Nicolas Heist and Heiko Paulheim. NASTyLinker: NIL-Aware Scalable Transformer-Based Entity Linker. In Catia Pesquita, Ernesto Jiménez-Ruiz, Jamie P. McCusker, Daniel Faria, Mauro Dragoni, Anastasia Dimou, Raphaël Troncy, and Sven Hertling, editors, The Semantic Web - 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28 - June 1, 2023, Proceedings, volume 13870 of Lecture Notes in Computer Science, pages 174-191. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-33455-9_11.
  67. Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife, 6:e26726, 2017. URL: https://doi.org/10.7554/eLife.26726.
  68. Robert Hoehndorf, Paul N. Schofield, and Georgios V. Gkoutos. The role of ontologies in biological and biomedical research: a functional perspective. Briefings in Bioinformatics, 16(6):1069-1080, apr 2015. URL: https://doi.org/10.1093/BIB/BBV011.
  69. Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. Number 22 in Synthesis Lectures on Data, Semantics, and Knowledge. Springer, 2021. URL: https://doi.org/10.2200/S01125ED1V01Y202109DSK022.
  70. Chao-Wei Huang, Shang-Chi Tsai, and Yun-Nung Chen. PLM-ICD: Automatic ICD coding with pretrained language models. In Proceedings of the 4th Clinical Natural Language Processing Workshop, pages 10-20, 2022. URL: https://doi.org/10.18653/v1/2022.clinicalnlp-1.2.
  71. Chung-Chi Huang and Zhiyong Lu. Community challenges in biomedical text mining over 10 years: success, failure and the future. Briefings in bioinformatics, 17(1):132-144, 2016. URL: https://doi.org/10.1093/BIB/BBV024.
  72. Kexin Huang, Payal Chandak, Qianwen Wang, Shreyas Havaldar, Akhil Vaid, Jure Leskovec, Girish Nadkarni, Benjamin Glicksberg, Nils Gehlenborg, and Marinka Zitnik. Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design. medRxiv, 2023. URL: https://doi.org/10.1101/2023.03.19.23287458.
  73. Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Artificial intelligence foundation for therapeutic science. Nature chemical biology, 2022. URL: https://doi.org/10.1038/s41589-022-01131-2.
  74. Pere-Lluís Huguet Cabot and Roberto Navigli. REBEL: Relation extraction by end-to-end language generation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2370-2381, Punta Cana, Dominican Republic, nov 2021. Association for Computational Linguistics. URL: https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.204.
  75. Lawrence Hunter, Zhiyong Lu, James Firby, William A Baumgartner, Helen L Johnson, Philip V Ogren, and K Bretonnel Cohen. Opendmap: an open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression. BMC bioinformatics, 9(1):1-11, 2008. URL: https://doi.org/10.1186/1471-2105-9-78.
  76. Anastasiia Iurshina, Jiaxin Pan, Rafika Boutalbi, and Steffen Staab. NILK: Entity Linking Dataset Targeting NIL-Linking Cases. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, CIKM '22, pages 4069-4073, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3511808.3557659.
  77. Nicolas Jay and Mathieu d'Aquin. Linked data and online classifications to organise mined patterns in patient data. In AMIA 2013, American Medical Informatics Association Annual Symposium, Washington, DC, USA, November 16-20, 2013, 2013. URL: https://knowledge.amia.org/amia-55142-a2013e-1.580047/t-05-1.583941/f-005-1.583942/a-224-1.584151/a-226-1.584146.
  78. Shaoxiong Ji, Matti Hölttä, and Pekka Marttinen. Does the magic of BERT apply to medical code assignment? A quantitative study. Computers in biology and medicine, 139:104998, 2021. URL: https://doi.org/10.1016/J.COMPBIOMED.2021.104998.
  79. Shaoxiong Ji, Wei Sun, Hang Dong, Honghan Wu, and Pekka Marttinen. A unified review of deep learning for automated medical coding. arXiv preprint arXiv:2201.02797, 2022. URL: https://doi.org/10.48550/arXiv.2201.02797.
  80. Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. LogMap: Logic-based and scalable ontology matching. In The Semantic Web-ISWC 2011: 10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I 10, pages 273-288, 2011. URL: https://doi.org/10.1007/978-3-642-25073-6_18.
  81. Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and Rafael Berlanga Llavori. Logic-based assessment of the compatibility of UMLS ontology sources. J. Biomed. Semant., 2(S-1):S2, 2011. URL: https://doi.org/10.1186/2041-1480-2-S1-S2.
  82. Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas Schneider, and Rafael Berlanga Llavori. Safe and Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool Support. In The Semantic Web: Research and Applications, 5th European Semantic Web Conference, Proceedings, pages 185-199, 2008. URL: https://doi.org/10.1007/978-3-540-68234-9_16.
  83. Ernesto Jiménez-Ruiz, Christian Meilicke, Bernardo Cuenca Grau, and Ian Horrocks. Evaluating mapping repair systems with large biomedical ontologies. In Thomas Eiter, Birte Glimm, Yevgeny Kazakov, and Markus Krötzsch, editors, Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23 - 26, 2013, volume 1014 of CEUR Workshop Proceedings, pages 246-257. CEUR-WS.org, 2013. URL: https://ceur-ws.org/Vol-1014/paper_63.pdf.
  84. Simon Jupp, Thomas Liener, Sirarat Sarntivijai, Olga Vrousgou, Tony Burdett, and Helen E. Parkinson. OxO - A Gravy of Ontology Mapping Extracts. In Matthew Horridge, Phillip Lord, and Jennifer D. Warrender, editors, Proceedings of the 8th International Conference on Biomedical Ontology (ICBO 2017), volume 2137 of CEUR Workshop Proceedings, 2017. URL: https://ceur-ws.org/Vol-2137/paper_27.pdf.
  85. Simon Jupp, James Malone, Jerven T. Bolleman, Marco Brandizi, Mark Davies, Leyla J. García, Anna Gaulton, Sebastien Gehant, Camille Laibe, Nicole Redaschi, Sarala M. Wimalaratne, Maria Jesus Martin, Nicolas Le Novère, Helen E. Parkinson, Ewan Birney, and Andrew M. Jenkinson. The EBI RDF platform: linked open data for the life sciences. Bioinform., 30(9):1338-1339, 2014. URL: https://doi.org/10.1093/BIOINFORMATICS/BTT765.
  86. Daniel Jurafsky and James H. Martin. Speech and Language Processing (3rd Edition). Online, 2023. URL: https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf.
  87. Maulik R. Kamdar and Mark A. Musen. PhLeGrA: Graph Analytics in Pharmacology over the Web of Life Sciences Linked Open Data. In Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich, editors, Proceedings of the 26th International Conference on World Wide Web, pages 321-329. ACM, 2017. URL: https://doi.org/10.1145/3038912.3052692.
  88. Maulik R. Kamdar and Mark A. Musen. An empirical meta-analysis of the life sciences linked open data on the web. Scientific Data, 8, 2020. URL: https://doi.org/10.1038/s41597-021-00797-y.
  89. Md. Rezaul Karim. Interpreting black-box machine learning models with decision rules and knowledge graph reasoning. Dissertation, RWTH Aachen University, Aachen, 2022. Veröffentlicht auf dem Publikationsserver der RWTH Aachen University; Dissertation, RWTH Aachen University, 2022. URL: https://doi.org/10.18154/RWTH-2022-07610.
  90. Md Rezaul Karim, Tanhim Islam, Md Shajalal, Oya Beyan, Christoph Lange, Michael Cochez, Dietrich Rebholz-Schuhmann, and Stefan Decker. Explainable ai for bioinformatics: Methods, tools and applications. Briefings in bioinformatics, 24(5):bbad236, 2023. URL: https://doi.org/10.1093/BIB/BBAD236.
  91. Nora Kassner, Fabio Petroni, Mikhail Plekhanov, Sebastian Riedel, and Nicola Cancedda. EDIN: An end-to-end benchmark and pipeline for unknown entity discovery and indexing. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8659-8673, Abu Dhabi, United Arab Emirates, dec 2022. Association for Computational Linguistics. URL: https://doi.org/10.18653/V1/2022.EMNLP-MAIN.593.
  92. Rohit J Kate. Automatic full conversion of clinical terms into SNOMED CT concepts. Journal of Biomedical Informatics, 111:103585, 2020. URL: https://doi.org/10.1016/J.JBI.2020.103585.
  93. Mayank Kejriwal. Domain-Specific Knowledge Graph Construction. Springer Publishing Company, Incorporated, 1st edition, 2019. URL: https://doi.org/10.1007/978-3-030-12375-8.
  94. Troy D. Kelley. Symbolic and sub-symbolic representations in computational models of human cognition: What can be learned from biology? Theory & Psychology, 13(6):847-860, 2003. URL: https://doi.org/10.1177/0959354303136005.
  95. Elisa F. Kendall and Deborah L. McGuinness. Ontology Engineering. Synthesis Lectures on the Semantic Web: Theory and Technology. Springer, Cham, Switzerland, 2019. URL: https://doi.org/10.1007/978-3-031-79486-5.
  96. Sebastian Köhler, Michael Gargano, Nicolas Matentzoglu, Leigh C Carmody, David Lewis-Smith, Nicole A Vasilevsky, Daniel Danis, Ganna Balagura, Gareth Baynam, Amy M Brower, et al. The human phenotype ontology in 2021. Nucleic acids research, 49(D1):D1207-D1217, 2021. URL: https://doi.org/10.1093/NAR/GKAA1043.
  97. Martin Krallinger, Florian Leitner, Carlos Rodriguez-Penagos, and Alfonso Valencia. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome biology, 9:1-19, 2008. URL: https://doi.org/10.1186/gb-2008-9-s2-s4.
  98. Michael Kuhn, Damian Milosz Szklarczyk, Sune Pletscher-Frankild, Thomas H Blicher, Christian von Mering, Lars J Jensen, and Peer Bork. Stitch 4: integration of protein-chemical interactions with user data. Nucleic Acids Research, 42(D1):D401-D407, 2013. URL: https://doi.org/10.1093/NAR/GKT1207.
  99. Maxat Kulmanov and Robert Hoehndorf. DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms. Bioinformatics, 38(Supplement_1):i238-i245, 2022. URL: https://doi.org/10.1093/bioinformatics/btac256.
  100. Hoang Thanh Lam, Marco Luca Sbodio, Marcos Martinez Gallindo, Mykhaylo Zayats, Raul Fernandez-Diaz, Victor Valls, Gabriele Picco, Cesar Berrospi Ramis, and Vanessa Lopez. Otter-Knowledge: benchmarks of multimodal knowledge graph representation learning from different sources for drug discovery. CoRR, abs/2306.12802, 2023. URL: https://doi.org/10.48550/ARXIV.2306.12802.
  101. Robert Leaman, Ritu Khare, and Zhiyong Lu. Challenges in clinical natural language processing for automated disorder normalization. Journal of biomedical informatics, 57:28-37, 2015. URL: https://doi.org/10.1016/J.JBI.2015.07.010.
  102. Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234-1240, sep 2019. URL: https://doi.org/10.1093/BIOINFORMATICS/BTZ682.
  103. Ulf Leser and Jörg Hakenberg. What makes a gene name? Named entity recognition in the biomedical literature. Briefings in bioinformatics, 6(4):357-369, 2005. URL: https://doi.org/10.1093/BIB/6.4.357.
  104. Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoyanov. Pretrained language models for biomedical and clinical tasks: Understanding and extending the state-of-the-art. In Proceedings of the 3rd Clinical Natural Language Processing Workshop, pages 146-157, 2020. URL: https://doi.org/10.18653/V1/2020.CLINICALNLP-1.17.
  105. Huanyu Li, Zlatan Dragisic, Daniel Faria, Valentina Ivanova, Ernesto Jiménez-Ruiz, Patrick Lambrix, and Catia Pesquita. User validation in ontology alignment: functional assessment and impact. Knowl. Eng. Rev., 34:e15, 2019. URL: https://doi.org/10.1017/S0269888919000080.
  106. Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sciaky, Chih-Hsuan Wei, Robert Leaman, Allan Peter Davis, Carolyn J. Mattingly, Thomas C. Wiegers, and Zhiyong Lu. Biocreative V CDR task corpus: a resource for chemical disease relation extraction. Database J. Biol. Databases Curation, 2016, 2016. URL: https://doi.org/10.1093/DATABASE/BAW068.
  107. Michelle M Li, Kexin Huang, and Marinka Zitnik. Graph representation learning in biomedicine and healthcare. Nature Biomedical Engineering, pages 1-17, 2022. URL: https://doi.org/10.1038/s41551-022-00942-x.
  108. Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco Basaldella, and Nigel Collier. Self-alignment pretraining for biomedical entity representations. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4228-4238, 2021. URL: https://doi.org/10.18653/V1/2021.NAACL-MAIN.334.
  109. Hao Liu, Yehoshua Perl, and James Geller. Concept Placement Using BERT Trained by Transforming and Summarizing Biomedical Ontology Structure. J. of Biomedical Informatics, 112(C), 2020. URL: https://doi.org/10.1016/J.JBI.2020.103607.
  110. Kaihong Liu, William R Hogan, and Rebecca S Crowley. Natural language processing methods and systems for biomedical ontology learning. Journal of biomedical informatics, 44(1):163-179, 2011. URL: https://doi.org/10.1016/J.JBI.2010.07.006.
  111. Yu Liu, Jingtao Ding, Yanjie Fu, and Yong Li. Urbankg: An urban knowledge graph system. ACM Transactions on Intelligent Systems and Technology, 14(4):1-25, 2023. URL: https://doi.org/10.1145/3588577.
  112. Takaki Makino, Yoshihiro Ohta, Jun’ichi Tsujii, et al. Tuning support vector machines for biomedical named entity recognition. In Proceedings of the ACL-02 workshop on Natural language processing in the biomedical domain, pages 1-8, 2002. URL: https://doi.org/10.3115/1118149.1118150.
  113. Diego Marcheggiani and Ivan Titov. Discrete-State Variational Autoencoders for Joint Discovery and Factorization of Relations. Transactions of the Association for Computational Linguistics, 4:231-244, jun 2016. URL: https://doi.org/10.1162/TACL_A_00095.
  114. Nicolas Matentzoglu, James P. Balhoff, Susan M. Bello, Chris Bizon, Matthew H. Brush, Tiffany J. Callahan, Christopher G. Chute, William D. Duncan, Chris T. A. Evelo, Davera Gabriel, John Graybeal, Alasdair J. G. Gray, Benjamin M. Gyori, Melissa A. Haendel, Henriette Harmse, Nomi L. Harris, Ian Harrow, Harshad Hegde, Amelia L. Hoyt, Charles Tapley Hoyt, Dazhi Jiao, Ernesto Jiménez-Ruiz, Simon Jupp, Hyeongsik Kim, Sebastian Köhler, Thomas Liener, Qinqin Long, James Malone, James A. McLaughlin, Julie A. McMurry, Sierra A. T. Moxon, Monica C. Munoz-Torres, David Osumi-Sutherland, James A. Overton, Bjoern Peters, Tim E. Putman, Núria Queralt-Rosinach, Kent A. Shefchek, Harold Solbrig, Anne E. Thessen, Tania Tudorache, Nicole A. Vasilevsky, Alex H. Wagner, and Christopher J. Mungall. A simple standard for sharing ontological mappings (SSSOM). Database J. Biol. Databases Curation, 2022(2022), 2022. URL: https://doi.org/10.1093/DATABASE/BAAC035.
  115. Nicolas Matentzoglu, Damien Goutte-Gattat, Shawn Zheng Kai Tan, James P Balhoff, Seth Carbon, Anita R Caron, William D Duncan, Joe E Flack, Melissa Haendel, Nomi L Harris, William R Hogan, Charles Tapley Hoyt, Rebecca C Jackson, HyeongSik Kim, Huseyin Kir, Martin Larralde, Julie A McMurry, James A Overton, Bjoern Peters, Clare Pilgrim, Ray Stefancsik, Sofia MC Robb, Sabrina Toro, Nicole A Vasilevsky, Ramona Walls, Christopher J Mungall, and David Osumi-Sutherland. Ontology Development Kit: a toolkit for building, maintaining and standardizing biomedical ontologies. Database, 2022:baac087, oct 2022. URL: https://doi.org/10.1093/DATABASE/BAAC087.
  116. Jamie P. McCusker, Neha Keshan, Sabbir Rashid, Michael Deagen, Cate Brinson, and Deborah L. McGuinness. NanoMine: A Knowledge Graph for Nanocomposite Materials Science. In The Semantic Web – ISWC 2020: 19th International Semantic Web Conference, Athens, Greece, November 2–6, 2020, Proceedings, Part II, pages 144-159, 2020. URL: https://doi.org/10.1007/978-3-030-62466-8_10.
  117. Pierre Monnin, Miguel Couceiro, Amedeo Napoli, and Adrien Coulet. Knowledge-based matching of n-ary tuples. In Mehwish Alam, Tanya Braun, and Bruno Yun, editors, Ontologies and Concepts in Mind and Machine - 25th International Conference on Conceptual Structures, Proceedings, volume 12277 of Lecture Notes in Computer Science, pages 48-56, 2020. URL: https://doi.org/10.1007/978-3-030-57855-8_4.
  118. Pierre Monnin, Joël Legrand, Graziella Husson, Patrice Ringot, Andon Tchechmedjiev, Clément Jonquet, Amedeo Napoli, and Adrien Coulet. PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison. BMC Bioinform., 20-S(4):139:1-139:16, 2019. URL: https://doi.org/10.1186/S12859-019-2693-9.
  119. Pierre Monnin, Chedy Raïssi, Amedeo Napoli, and Adrien Coulet. Discovering alignment relations with graph convolutional networks: A biomedical case study. Semantic Web, 13(3):379-398, 2022. URL: https://doi.org/10.3233/SW-210452.
  120. Deisy Morselli Gysi, Ítalo Do Valle, Marinka Zitnik, Asher Ameli, Xiao Gan, Onur Varol, Susan Dina Ghiassian, JJ Patten, Robert A Davey, Joseph Loscalzo, et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proceedings of the National Academy of Sciences, 118(19):e2025581118, 2021. URL: https://doi.org/10.1073/pnas.2025581118.
  121. Boris Motik and Ljiljana Stojanovic. Ontology evolution within ontology editors. In OntoWeb-SIG3 Workshop at the 13th International Conference on Knowledge Engineering and Knowledge Management EKAW 2002; Siguenza (Spain), 30th September 2002, 2002. URL: https://ceur-ws.org/Vol-62/EON2002_Stojanovic.pdf.
  122. Lino Murali, G. Gopakumar, Daleesha M. Viswanathan, and Prema Nedungadi. Towards electronic health record-based medical knowledge graph construction, completion, and applications: A literature study. Journal of Biomedical Informatics, 143:104403, 2023. URL: https://doi.org/10.1016/J.JBI.2023.104403.
  123. Emir Muñoz, Vít Nováček, and Pierre-Yves Vandenbussche. Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models. Briefings in Bioinformatics, 20(1):190-202, aug 2017. URL: https://doi.org/10.1093/BIB/BBX099.
  124. Erik B Myklebust, Ernesto Jimenez-Ruiz, Jiaoyan Chen, Raoul Wolf, and Knut Erik Tollefsen. Knowledge graph embedding for ecotoxicological effect prediction. In The Semantic Web-ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II 18, pages 490-506, 2019. URL: https://doi.org/10.1007/978-3-030-30796-7_30.
  125. Erik B Myklebust, Ernesto Jiménez-Ruiz, Jiaoyan Chen, Raoul Wolf, and Knut Erik Tollefsen. Prediction of adverse biological effects of chemicals using knowledge graph embeddings. Semantic Web, 13(3):299-338, 2022. URL: https://doi.org/10.3233/SW-222804.
  126. Erik Bryhn Myklebust, Ernesto Jiménez-Ruiz, Jiaoyan Chen, Raoul Wolf, and Knut Erik Tollefsen. Understanding Adverse Biological Effect Predictions Using Knowledge Graphs. CoRR, abs/2210.15985, 2022. URL: https://doi.org/10.48550/ARXIV.2210.15985.
  127. David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification. Lingvisticae Investigationes, 30(1):3-26, 2007. URL: https://doi.org/10.1075/bct.19.03nad.
  128. Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. RDFox: A Highly-Scalable RDF Store. In 14th International Semantic Web Conference, volume 9367 of Lecture Notes in Computer Science, pages 3-20. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-25010-6_1.
  129. Fabian Neuhaus and Janna Hastings. Ontology development is consensus creation, not (merely) representation. Applied Ontology, 17(4):495-513, 2022. URL: https://doi.org/10.3233/AO-220273.
  130. David N. Nicholson and Casey S. Greene. Constructing knowledge graphs and their biomedical applications. Computational and Structural Biotechnology Journal, 18:1414-1428, 2020. URL: https://doi.org/10.1016/j.csbj.2020.05.017.
  131. N. Noy and D.L. McGuinness. Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford Knowledge Systems Laboratory and Stanford Medical Informatics, 2001. Google Scholar
  132. Natalya F Noy, Nigam H Shah, Patricia L Whetzel, Benjamin Dai, Michael Dorf, Nicholas Griffith, Clement Jonquet, Daniel L Rubin, Margaret-Anne Storey, Christopher G Chute, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic acids research, 37(suppl_2):W170-W173, 2009. URL: https://doi.org/10.1093/NAR/GKP440.
  133. Vardaan Pahuja, Yu Gu, Wenhu Chen, Mehdi Bahrami, Lei Liu, Wei-Peng Chen, and Yu Su. A Systematic Investigation of KB-Text Embedding Alignment at Scale. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1764-1774, 2021. URL: https://doi.org/10.18653/V1/2021.ACL-LONG.139.
  134. Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large language models and knowledge graphs: A roadmap. CoRR, abs/2306.08302, 2023. URL: https://doi.org/10.48550/ARXIV.2306.08302.
  135. Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web, 8(3):489-508, jan 2017. URL: https://doi.org/10.3233/SW-160218.
  136. Hao Peng, Haoran Li, Yangqiu Song, Vincent Zheng, and Jianxin Li. Differentially private federated knowledge graphs embedding. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 1416-1425, 2021. URL: https://doi.org/10.1145/3459637.3482252.
  137. Romana Pernisch, Daniele Dell’Aglio, and Abraham Bernstein. Beware of the hierarchy—an analysis of ontology evolution and the materialisation impact for biomedical ontologies. Journal of Web Semantics, 70:100658, 2021. URL: https://doi.org/10.1016/J.WEBSEM.2021.100658.
  138. Mina Abd Nikooie Pour, Alsayed Algergawy, Patrice Buche, Leyla Jael Castro, Jiaoyan Chen, Hang Dong, Omaima Fallatah, Daniel Faria, Irini Fundulaki, Sven Hertling, Yuan He, Ian Horrocks, Martin Huschka, Liliana Ibanescu, Ernesto Jiménez-Ruiz, Naouel Karam, Amir Laadhar, Patrick Lambrix, Huanyu Li, Ying Li, Franck Michel, Engy Nasr, Heiko Paulheim, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Cássia Trojahn, Chantelle Verhey, Mingfang Wu, Beyza Yaman, Ondrej Zamazal, and Lu Zhou. Results of the Ontology Alignment Evaluation Initiative 2022. In Proceedings of the 17th International Workshop on Ontology Matching (OM 2022) co-located with the 21th International Semantic Web Conference (ISWC 2022), volume 3324 of CEUR Workshop Proceedings, pages 84-128, 2022. URL: https://ceur-ws.org/Vol-3324/oaei22_paper0.pdf.
  139. María Poveda-Villalón, Alba Fernández-Izquierdo, Mariano Fernández-López, and Raúl García-Castro. LOT: An industrial oriented ontology engineering framework. Engineering Applications of Artificial Intelligence, 111:104755, 2022. URL: https://doi.org/10.1016/J.ENGAPPAI.2022.104755.
  140. Eric Prud'hommeaux, Steve Harris, and Andy Seaborne. SPARQL 1.1 Query Language. Technical report, W3C, 2013. URL: https://www.w3.org/TR/sparql11-query/.
  141. Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Björne, Jorma Boberg, Jouni Järvinen, and Tapio Salakoski. Bioinfer: a corpus for information extraction in the biomedical domain. BMC bioinformatics, 8:1-24, 2007. URL: https://doi.org/10.1186/1471-2105-8-50.
  142. Zhixin Qi, Hongzhi Wang, Ziming Shen, and Donghua Yang. PreKar: A learned performance predictor for knowledge graph stores. World Wide Web, 26(1):321-341, 2023. URL: https://doi.org/10.1007/S11280-022-01033-2.
  143. Enayat Rajabi and Somayeh Kafaie. Knowledge graphs and explainable AI in healthcare. Inf., 13(10):459, 2022. URL: https://doi.org/10.3390/INFO13100459.
  144. K. E. Ravikumar, Majid Rastegar-Mojarad, Majid Rastegar-Mojarad, and Hongfang Liu. Belminer: adapting a rule-based relation extraction system to extract biological expression language statements from bio-medical literature evidence sentences. Database: The Journal of Biological Databases and Curation, 2017, 2017. URL: https://doi.org/10.1093/DATABASE/BAW156.
  145. KE Ravikumar, Kavishwar B Wagholikar, and Hongfang Liu. Towards pathway curation through literature mining-a case study using pharmgkb. In Biocomputing 2014, pages 352-363. World Scientific, 2014. URL: http://psb.stanford.edu/psb-online/proceedings/psb14/ravikumarke.pdf, URL: https://doi.org/10.1142/9789814583220_0034.
  146. Alan Rector, Stefan Schulz, Jean Marie Rodrigues, Christopher G Chute, and Harold Solbrig. On beyond Gruber: “Ontologies” in today’s biomedical information systems and the limits of OWL. Journal of Biomedical Informatics, 100:100002, 2019. URL: https://doi.org/10.1016/J.YJBINX.2019.100002.
  147. Petar Ristoski and Heiko Paulheim. Semantic web in data mining and knowledge discovery: A comprehensive survey. J. Web Semant., 36:1-22, 2016. URL: https://doi.org/10.2139/ssrn.3199217.
  148. Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 118(15), 2021. URL: https://doi.org/10.1073/PNAS.2016239118.
  149. Tim Rocktäschel, Michael Weidlich, and Ulf Leser. ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics, 28(12):1633-1640, 2012. URL: https://doi.org/10.1093/BIOINFORMATICS/BTS183.
  150. Natalia Díaz Rodríguez, Alberto Lamas, Jules Sanchez, Gianni Franchi, Ivan Donadello, Siham Tabik, David Filliat, Policarpo Cruz, Rosana Montes, and Francisco Herrera. Explainable neural-symbolic learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The monumai cultural heritage use case. Inf. Fusion, 79:58-83, 2022. URL: https://doi.org/10.1016/J.INFFUS.2021.09.022.
  151. Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das. Large scale chemical language representations capture molecular structure and properties. Nature Machine Intelligence, 4(12):1256-1264, 2022. URL: https://doi.org/10.1038/S42256-022-00580-7.
  152. Manuel Salvadores, Paul R. Alexander, Mark A. Musen, and Natalya Fridman Noy. BioPortal as a dataset of linked biomedical ontologies and terminologies in RDF. Semantic Web, 4(3):277-284, 2013. URL: https://doi.org/10.3233/SW-2012-0086.
  153. Matthias Samwald, José Antonio Miñarro-Giménez, Richard D. Boyce, Robert R. Freimuth, Klaus-Peter Adlassnig, and Michel Dumontier. Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies. BMC Medical Informatics Decis. Mak., 15:12, 2015. URL: https://doi.org/10.1186/S12911-015-0130-1.
  154. Conrad L Schoch, Stacy Ciufo, Mikhail Domrachev, Carol L Hotton, Sivakumar Kannan, Rogneda Khovanskaya, Detlef Leipe, Richard Mcveigh, Kathleen O’Neill, Barbara Robbertse, Shobha Sharma, Vladimir Soussov, John P Sullivan, Lu Sun, Seán Turner, and Ilene Karsch-Mizrachi. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, 2020:baaa062, aug 2020. URL: https://doi.org/10.1093/DATABASE/BAAA062.
  155. Lynn M Schriml, James B Munro, Mike Schor, Dustin Olley, Carrie McCracken, Victor Felix, J Allen Baron, Rebecca Jackson, Susan M Bello, Cynthia Bearer, et al. The human disease ontology 2022 update. Nucleic acids research, 50(D1):D1255-D1261, 2022. URL: https://doi.org/10.1093/NAR/GKAB1063.
  156. Marta Contreiras Silva, Daniel Faria, and Catia Pesquita. Matching multiple ontologies to build a knowledge graph for personalized medicine. In The Semantic Web: 19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, May 29-June 2, 2022, Proceedings, pages 461-477. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-06981-9_27.
  157. Ana Claudia Sima, Tarcisio Mendes de Farias, Erich Zbinden, Maria Anisimova, Manuel Gil, Heinz Stockinger, Kurt Stockinger, Marc Robinson-Rechavi, and Christophe Dessimoz. Enabling semantic queries across federated bioinformatics databases. Database, 2019:baz106, 2019. URL: https://doi.org/10.1093/DATABASE/BAZ106.
  158. Rita T Sousa, Sara Silva, and Catia Pesquita. Evolving knowledge graph similarity for supervised learning in complex biomedical domains. BMC bioinformatics, 21:1-19, 2020. URL: https://doi.org/10.1186/S12859-019-3296-1.
  159. Rita T Sousa, Sara Silva, and Catia Pesquita. Explainable representations for relation prediction in knowledge graphs. arXiv e-prints, pages arXiv-2306, 2023. URL: https://doi.org/10.24963/KR.2023/62.
  160. John F Sowa et al. Semantic networks. Encyclopedia of artificial intelligence, 2:1493-1511, 1992. URL: https://doi.org/10.1002/0470018860.s00065.
  161. Lise Stork, Ilaria Tiddi, René Spijker, and Annette ten Teije. Explainable drug repurposing in context via deep reinforcement learning. In Catia Pesquita, Ernesto Jimenez-Ruiz, Jamie McCusker, Daniel Faria, Mauro Dragoni, Anastasia Dimou, Raphael Troncy, and Sven Hertling, editors, The Semantic Web, pages 3-20, 2023. URL: https://doi.org/10.1007/978-3-031-33455-9_1.
  162. Kai Sun, Yuhua Liu, Zongchao Guo, and Changbo Wang. Visualization for knowledge graph based on education data. Int. J. Softw. Informatics, 10, 2016. URL: http://www.ijsi.org/ijsi/article/abstract/i227.
  163. Mujeen Sung, Jinhyuk Lee, Sean Yi, Minji Jeon, Sungdong Kim, and Jaewoo Kang. Can language models be biomedical knowledge bases? In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4723-4734, 2021. URL: https://doi.org/10.18653/V1/2021.EMNLP-MAIN.388.
  164. Gyte Tamasauskaite and Paul Groth. Defining a knowledge graph development process through a systematic review. ACM Trans. Softw. Eng. Methodol., 32(1), 2023. URL: https://doi.org/10.1145/3522586.
  165. HSPO Team. Health and Social Person-centric Ontology, sep 2022. URL: https://github.com/IBM/hspo-ontology.
  166. Christos Theodoropoulos, Natasha Mulligan, Thaddeus Stappenbeck, and Joao Bettencourt-Silva. Representation learning for person or entity-centric knowledge graphs: An application in healthcare. CoRR, abs/2305.05640, 2023. URL: https://doi.org/10.48550/ARXIV.2305.05640.
  167. Ilaria Tiddi and Stefan Schlobach. Knowledge graphs as tools for explainable machine learning: A survey. Artif. Intell., 302:103627, 2022. URL: https://doi.org/10.1016/J.ARTINT.2021.103627.
  168. Santiago Timón-Reina, Mariano Rincón, and Rafael Martínez-Tomás. An overview of graph databases and their applications in the biomedical domain. Database, 2021:baab026, may 2021. URL: https://doi.org/10.1093/DATABASE/BAAB026.
  169. Igor Trajkovski, Nada Lavrac, and Jakub Tolar. SEGS: search for enriched gene sets in microarray data. J. Biomed. Informatics, 41(4):588-601, 2008. URL: https://doi.org/10.1016/J.JBI.2007.12.001.
  170. Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. Materializing knowledge bases via trigger graphs. Proc. VLDB Endow., 14(6):943-956, 2021. URL: https://doi.org/10.14778/3447689.3447699.
  171. Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal Turhan, Aybar C Acar, and Tunca Doğan. Learning functional properties of proteins with language models. Nature Machine Intelligence, 4(3):227-245, 2022. URL: https://doi.org/10.1038/S42256-022-00457-9.
  172. Nicole A. Vasilevsky, Shahim Essaid, Nicolas Matentzoglu, Nomi L. Harris, Melissa A. Haendel, Peter N. Robinson, and Christopher J. Mungall. Mondo Disease Ontology: Harmonizing Disease Concepts Across the World (short paper). In Janna Hastings and Frank Loebe, editors, Proceedings of the 11th International Conference on Biomedical Ontologies (ICBO) joint with the 10th Workshop on Ontologies and Data in Life Sciences (ODLS) and part of the Bolzano Summer of Knowledge (BoSK 2020), volume 2807 of CEUR Workshop Proceedings, pages 1-2. CEUR-WS.org, 2020. URL: https://ceur-ws.org/Vol-2807/abstractY.pdf.
  173. Blerta Veseli, Sneha Singhania, Simon Razniewski, and Gerhard Weikum. Evaluating language models for knowledge base completion. In European Semantic Web Conference, pages 227-243, 2023. URL: https://doi.org/10.1007/978-3-031-33455-9_14.
  174. Olga Vrousgou, Tony Burdett, Helen E. Parkinson, and Simon Jupp. Biomedical Ontology Evolution in the EMBL-EBI Ontology Lookup Service. In Themis Palpanas and Kostas Stefanidis, editors, Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops 2016, volume 1558 of CEUR Workshop Proceedings, 2016. URL: https://ceur-ws.org/Vol-1558/paper12.pdf.
  175. Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial intelligence. Nature, 620(7972):47-60, 2023. URL: https://doi.org/10.1038/S41586-023-06221-2.
  176. Meng Wang and Ningyu Zhang. Cross-modal knowledge discovery, inference, and challenges. In Reasoning Web. Causality, Explanations and Declarative Knowledge: 18th International Summer School 2022, Tutorial Lectures, pages 199-209. Springer Nature Switzerland Springer, Cham, 2023. URL: https://doi.org/10.1007/978-3-031-31414-8_6.
  177. Xin Wang and Weixue Chen. Knowledge graph data management: Models, methods, and systems. In International Conference on Web Information Systems Engineering, pages 3-12. Springer, 2020. URL: https://doi.org/10.1007/978-981-15-3281-8_1.
  178. Xu Wang, Chen Yang, and Renchu Guan. A comparative study for biomedical named entity recognition. International Journal of Machine Learning and Cybernetics, 9:373-382, 2018. URL: https://doi.org/10.1007/S13042-015-0426-6.
  179. Xuwu Wang, Junfeng Tian, Min Gui, Zhixu Li, Rui Wang, Ming Yan, Lihan Chen, and Yanghua Xiao. WikiDiverse: A Multimodal Entity Linking Dataset with Diversified Contextual Topics and Entity Types. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4785-4797, 2022. URL: https://doi.org/10.18653/V1/2022.ACL-LONG.328.
  180. M. Whirl-Carrillo, R. Huddart, L. Gong, K. Sangkuhl, C. F. Thorn, R. Whaley, and T. E. Klein. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clinical pharmacology and therapeutics, 110(3):563-572, 2021. URL: https://doi.org/10.1002/cpt.2350.
  181. Xander Wilcke, Peter Bloem, and Victor De Boer. The knowledge graph as the default data model for learning on heterogeneous knowledge. Data Science, 1(1-2):39-57, 2017. URL: https://doi.org/10.3233/DS-170007.
  182. World Health Organization. International statistical classification of diseases and related health problems. ICD-10. World Health Organization, Geneva, Switzerland, fifth edition, 2016. Google Scholar
  183. Tianxing Wu, Guilin Qi, Cheng Li, and Meng Wang. A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications. Sustainability, 10(9):1-26, 2018. URL: https://doi.org/10.3390/su10093245.
  184. Eryu Xia, Wen Sun, Jing Mei, Enliang Xu, Ke Wang, and Yong Qin. Mining disease-symptom relation from massive biomedical literature and its application in severe disease diagnosis. AMIA Annual Symposium Proceedings, 2018:1118-1126, 2018. URL: https://knowledge.amia.org/67852-amia-1.4259402/t004-1.4263758/t004-1.4263759/2976467-1.4263778/2976026-1.4263775.
  185. Bo Xiong, Michael Cochez, Mojtaba Nayyeri, and Steffen Staab. Hyperbolic embedding inference for structured multi-label prediction. Advances in Neural Information Processing Systems, 35:33016-33028, 2022. URL: http://papers.nips.cc/paper_files/paper/2022/hash/d51ab0fc62fe2d777c7569952f518f56-Abstract-Conference.html.
  186. Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of protein sequences and biomedical texts. In Proceedings of the 40th International Conference on Machine Learning, ICML'23. JMLR.org, 2023. URL: https://proceedings.mlr.press/v202/xu23t.html.
  187. Zonghai Yao, Yi Cao, Zhichao Yang, Vijeta Deshpande, and Hong Yu. Extracting biomedical factual knowledge using pretrained language model and electronic health record context. In AMIA Annual Symposium Proceedings, volume 2022, page 1188, 2022. URL: https://knowledge.amia.org/76677-amia-1.4637602/f006-1.4642154/f006-1.4642155/82-1.4642180/1077-1.4642177.
  188. Ronghui You, Shuwei Yao, Hiroshi Mamitsuka, and Shanfeng Zhu. DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction. Bioinformatics, 37(Supplement_1):i262-i271, 2021. URL: https://doi.org/10.1093/BIOINFORMATICS/BTAB270.
  189. Ronghui You, Zihan Zhang, Yi Xiong, Fengzhu Sun, Hiroshi Mamitsuka, and Shanfeng Zhu. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank. Bioinformatics, 34(14):2465-2473, 2018. URL: https://doi.org/10.1093/BIOINFORMATICS/BTY130.
  190. Jianbo Yuan, Zhiwei Jin, Han Guo, Hongxia Jin, Xianchao Zhang, Tristram Smith, and Jiebo Luo. Constructing biomedical domain-specific knowledge graph with minimum supervision. Knowledge and Information Systems, 62(1), 2020. URL: https://doi.org/10.1007/S10115-019-01351-4.
  191. Bohui Zhang, Albert Meroño Peñuela, and Elena Simperl. Towards explainable automatic knowledge graph construction with human-in-the-loop. In HHAI 2023: Augmenting Human Intellect, pages 274-289. IOS Press, Amsterdam, 2023. URL: https://doi.org/10.3233/FAIA230091.
  192. Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng, Qiang Zhang, Jiazhang Lian, and Huajun Chen. OntoProtein: Protein Pretraining With Gene Ontology Embedding. In International Conference on Learning Representations, 2022. URL: https://openreview.net/forum?id=yfe1VMYAXa4.
  193. Yingwen Zhao, Jun Wang, Jian Chen, Xiangliang Zhang, Maozu Guo, and Guoxian Yu. A literature review of gene function prediction by modeling gene ontology. Frontiers in genetics, 11:400, 2020. URL: https://doi.org/10.3389/fgene.2020.00400.
  194. Hong-Yu Zhou, Yunxiang Fu, Zhicheng Zhang, Bian Cheng, and Yizhou Yu. Protein representation learning via knowledge enhanced primary structure reasoning. In International Conference on Learning Representations, 2023. URL: https://openreview.net/pdf?id=VbCMhg7MRmj.
  195. Qile Zhu, Xiaolin Li, Ana Conesa, and Cécile Pereira. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Bioinformatics, 34(9):1547-1554, 2018. URL: https://doi.org/10.1093/BIOINFORMATICS/BTX815.
  196. Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34(13):i457-i466, 2018. URL: https://doi.org/10.1093/BIOINFORMATICS/BTY294.
  197. Lei Zou, M Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao. gStore: a graph-based SPARQL query engine. The VLDB journal, 23:565-590, 2014. URL: https://doi.org/10.1007/S00778-013-0337-7.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail