3 Search Results for "Kempe, David"


Document
Invited Talk
Exploring the Space of Colourings with Kempe Changes (Invited Talk)

Authors: Marthe Bonamy

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Kempe changes were introduced in 1879 in an attempt to prove the 4-colour theorem. They are a convenient if not crucial tool to prove various colouring theorems. Here, we consider how to navigate from a colouring to another through Kempe changes. When is it possible? How fast?

Cite as

Marthe Bonamy. Exploring the Space of Colourings with Kempe Changes (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonamy:LIPIcs.MFCS.2023.1,
  author =	{Bonamy, Marthe},
  title =	{{Exploring the Space of Colourings with Kempe Changes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.1},
  URN =		{urn:nbn:de:0030-drops-185350},
  doi =		{10.4230/LIPIcs.MFCS.2023.1},
  annote =	{Keywords: Graph theory, graph coloring, reconfiguration}
}
Document
Snapshot Disjointness in Temporal Graphs

Authors: Allen Ibiapina and Ana Silva

Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)


Abstract
In the study of temporal graphs, only paths respecting the flow of time are relevant. In this context, many concepts of walks disjointness have been proposed over the years, and the validity of Menger’s Theorem, as well as the complexity of related problems, has been investigated. Menger’s Theorem states that the maximum number of disjoint paths between two vertices is equal to the minimum number of vertices required to disconnect them. In this paper, we introduce and investigate a type of disjointness that is only time dependent. Two walks are said to be snapshot disjoint if they are not active in a same snapshot (also called timestep). The related paths and cut problems are then defined and proved to be W[1]-hard and XP-time solvable when parameterized by the size of the solution. Additionally, in the light of the definition of Mengerian graphs given by Kempe, Kleinberg and Kumar in their seminal paper (STOC'2000), we define a Mengerian graph for time as a graph G for which there is no time labeling for its edges where Menger’s Theorem does not hold in the context of snapshot disjointness. We then give a characterization of Mengerian graphs in terms of forbidden structures and provide a polynomial-time recognition algorithm. Finally, we also prove that, given a temporal graph (G,λ) and a pair of vertices s,z ∈ V(G), deciding whether at most h multiedges can separate s from z is NP-complete, where one multiedge uv is the set of all edges with endpoints u and v.

Cite as

Allen Ibiapina and Ana Silva. Snapshot Disjointness in Temporal Graphs. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ibiapina_et_al:LIPIcs.SAND.2023.1,
  author =	{Ibiapina, Allen and Silva, Ana},
  title =	{{Snapshot Disjointness in Temporal Graphs}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.1},
  URN =		{urn:nbn:de:0030-drops-179379},
  doi =		{10.4230/LIPIcs.SAND.2023.1},
  annote =	{Keywords: Temporal graphs, Menger’s Theorem, Snapshot disjointness}
}
Document
Alea Iacta Est: Auctions, Persuasion, Interim Rules, and Dice

Authors: Shaddin Dughmi, David Kempe, and Ruixin Qiang

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
To select a subset of samples or "winners" from a population of candidates, order sampling [Rosén, 1997] and the k-unit Myerson auction [Myerson, 1981] share a common scheme: assign a (random) score to each candidate, then select the k candidates with the highest scores. We study a generalization of both order sampling and Myerson's allocation rule, called winner-selecting dice. The setting for winner-selecting dice is similar to auctions with feasibility constraints: candidates have random types drawn from independent prior distributions, and the winner set must be feasible subject to certain constraints. Dice (distributions over scores) are assigned to each type, and winners are selected to maximize the sum of the dice rolls, subject to the feasibility constraints. We examine the existence of winner-selecting dice that implement prescribed probabilities of winning (i.e., an interim rule) for all types. Our first result shows that when the feasibility constraint is a matroid, then for any feasible interim rule, there always exist winner-selecting dice that implement it. Unfortunately, our proof does not yield an efficient algorithm for constructing the dice. In the special case of a 1-uniform matroid, i.e., only one winner can be selected, we give an efficient algorithm that constructs winner-selecting dice for any feasible interim rule. Furthermore, when the types of the candidates are drawn in an i.i.d. manner and the interim rule is symmetric across candidates, unsurprisingly, an algorithm can efficiently construct symmetric dice that only depend on the type but not the identity of the candidate. One may ask whether we can extend our result to "second-order" interim rules, which not only specify the winning probability of a type, but also the winning probability conditioning on each other candidate's type. We show that our result does not extend, by exhibiting an instance of Bayesian persuasion whose optimal scheme is equivalent to a second-order interim rule, but which does not admit any dice-based implementation.

Cite as

Shaddin Dughmi, David Kempe, and Ruixin Qiang. Alea Iacta Est: Auctions, Persuasion, Interim Rules, and Dice. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dughmi_et_al:LIPIcs.ITCS.2019.31,
  author =	{Dughmi, Shaddin and Kempe, David and Qiang, Ruixin},
  title =	{{Alea Iacta Est: Auctions, Persuasion, Interim Rules, and Dice}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.31},
  URN =		{urn:nbn:de:0030-drops-101248},
  doi =		{10.4230/LIPIcs.ITCS.2019.31},
  annote =	{Keywords: Interim rule, order sampling, virtual value function, Border's theorem}
}
  • Refine by Author
  • 1 Bonamy, Marthe
  • 1 Dughmi, Shaddin
  • 1 Ibiapina, Allen
  • 1 Kempe, David
  • 1 Qiang, Ruixin
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Graph coloring
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Theory of computation → Algorithmic game theory

  • Refine by Keyword
  • 1 Border's theorem
  • 1 Graph theory
  • 1 Interim rule
  • 1 Menger’s Theorem
  • 1 Snapshot disjointness
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail