4 Search Results for "Liu, Yan"


Document
Efficient Parallel Output-Sensitive Edit Distance

Authors: Xiangyun Ding, Xiaojun Dong, Yan Gu, Youzhe Liu, and Yihan Sun

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In this paper, we study efficient parallel edit distance algorithms, both in theory and in practice. Given two strings A[1..n] and B[1..m], and a set of operations allowed to edit the strings, the edit distance between A and B is the minimum number of operations required to transform A into B. In this paper, we use edit distance to refer to the Levenshtein distance, which allows for unit-cost single-character edits (insertions, deletions, substitutions). Sequentially, a standard Dynamic Programming (DP) algorithm solves edit distance with Θ(nm) cost. In many real-world applications, the strings to be compared are similar to each other and have small edit distances. To achieve highly practical implementations, we focus on output-sensitive parallel edit-distance algorithms, i.e., to achieve asymptotically better cost bounds than the standard Θ(nm) algorithm when the edit distance is small. We study four algorithms in the paper, including three algorithms based on Breadth-First Search (BFS), and one algorithm based on Divide-and-Conquer (DaC). Our BFS-based solution is based on the Landau-Vishkin algorithm. We implement three different data structures for the longest common prefix (LCP) queries needed in the algorithm: the classic solution using parallel suffix array, and two hash-based solutions proposed in this paper. Our DaC-based solution is inspired by the output-insensitive solution proposed by Apostolico et al., and we propose a non-trivial adaption to make it output-sensitive. All of the algorithms studied in this paper have good theoretical guarantees, and they achieve different tradeoffs between work (total number of operations), span (longest dependence chain in the computation), and space. We test and compare our algorithms on both synthetic data and real-world data, including DNA sequences, Wikipedia texts, GitHub repositories, etc. Our BFS-based algorithms outperform the existing parallel edit-distance implementation in ParlayLib in all test cases. On cases with fewer than 10⁵ edits, our algorithm can process input sequences of size 10⁹ in about ten seconds, while ParlayLib can only process sequences of sizes up to 10⁶ in the same amount of time. By comparing our algorithms, we also provide a better understanding of the choice of algorithms for different input patterns. We believe that our paper is the first systematic study in the theory and practice of parallel edit distance.

Cite as

Xiangyun Ding, Xiaojun Dong, Yan Gu, Youzhe Liu, and Yihan Sun. Efficient Parallel Output-Sensitive Edit Distance. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ding_et_al:LIPIcs.ESA.2023.40,
  author =	{Ding, Xiangyun and Dong, Xiaojun and Gu, Yan and Liu, Youzhe and Sun, Yihan},
  title =	{{Efficient Parallel Output-Sensitive Edit Distance}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.40},
  URN =		{urn:nbn:de:0030-drops-186935},
  doi =		{10.4230/LIPIcs.ESA.2023.40},
  annote =	{Keywords: Edit Distance, Parallel Algorithms, String Algorithms, Dynamic Programming, Pattern Matching}
}
Document
Media Exposition
A Cautionary Tale: Burning the Medial Axis Is Unstable (Media Exposition)

Authors: Erin Chambers, Christopher Fillmore, Elizabeth Stephenson, and Mathijs Wintraecken

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
The medial axis of a set consists of the points in the ambient space without a unique closest point on the original set. Since its introduction, the medial axis has been used extensively in many applications as a method of computing a topologically equivalent skeleton. Unfortunately, one limiting factor in the use of the medial axis of a smooth manifold is that it is not necessarily topologically stable under small perturbations of the manifold. To counter these instabilities various prunings of the medial axis have been proposed. Here, we examine one type of pruning, called burning. Because of the good experimental results, it was hoped that the burning method of simplifying the medial axis would be stable. In this work we show a simple example that dashes such hopes based on Bing’s house with two rooms, demonstrating an isotopy of a shape where the medial axis goes from collapsible to non-collapsible.

Cite as

Erin Chambers, Christopher Fillmore, Elizabeth Stephenson, and Mathijs Wintraecken. A Cautionary Tale: Burning the Medial Axis Is Unstable (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 66:1-66:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chambers_et_al:LIPIcs.SoCG.2022.66,
  author =	{Chambers, Erin and Fillmore, Christopher and Stephenson, Elizabeth and Wintraecken, Mathijs},
  title =	{{A Cautionary Tale: Burning the Medial Axis Is Unstable}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{66:1--66:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.66},
  URN =		{urn:nbn:de:0030-drops-160744},
  doi =		{10.4230/LIPIcs.SoCG.2022.66},
  annote =	{Keywords: Medial axis, Collapse, Pruning, Burning, Stability}
}
Document
Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor With Reduced Response Time Bounds

Authors: Zheng Dong, Cong Liu, Alan Gatherer, Lee McFearin, Peter Yan, and James H. Anderson

Published in: LIPIcs, Volume 76, 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)


Abstract
Heterogeneous computing platforms with multiple types of computing resources have been widely used in many industrial systems to process dataflow tasks with pre-defined affinity of tasks to subgroups of resources. For many dataflow workloads with soft real-time requirements, guaranteeing fast and bounded response times is often the objective. This paper presents a new set of analysis techniques showing that a classical real-time scheduler, namely earliest-deadline first (EDF), is able to support dataflow tasks scheduled on such heterogeneous platforms with provably bounded response times while incurring no resource capacity loss, thus proving EDF to be an optimal solution for this scheduling problem. Experiments using synthetic workloads with widely varied parameters also demonstrate that the magnitude of the response time bounds yielded under the proposed analysis is reasonably small under all scenarios. Compared to the state-of-the-art soft real-time analysis techniques, our test yields a 68% reduction on response time bounds on average. This work demonstrates the potential of applying EDF into practical industrial systems containing dataflow-based workloads that desire guaranteed bounded response times.

Cite as

Zheng Dong, Cong Liu, Alan Gatherer, Lee McFearin, Peter Yan, and James H. Anderson. Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor With Reduced Response Time Bounds. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 76, pp. 15:1-15:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.ECRTS.2017.15,
  author =	{Dong, Zheng and Liu, Cong and Gatherer, Alan and McFearin, Lee and Yan, Peter and Anderson, James H.},
  title =	{{Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor With Reduced Response Time Bounds}},
  booktitle =	{29th Euromicro Conference on Real-Time Systems (ECRTS 2017)},
  pages =	{15:1--15:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-037-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{76},
  editor =	{Bertogna, Marko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2017.15},
  URN =		{urn:nbn:de:0030-drops-71565},
  doi =		{10.4230/LIPIcs.ECRTS.2017.15},
  annote =	{Keywords: Real-time Scheduling, schedulability, heterogeneous multiprocessor}
}
Document
Formal Modelling and Verification of Pervasive Computing Systems

Authors: Yan Liu

Published in: OASIcs, Volume 31, 1st French Singaporean Workshop on Formal Methods and Applications (FSFMA 2013)


Abstract
Pervasive computing (PvC) systems are emerging as promising solutions to many practical problems, e.g., elderly care in home. However, such systems have long been developed without sufficient verification. Formal methods, eps. model checking are sound techniques for complex system analysis regarding correctness and reliability requirements. In this work, a formal modelling framework is proposed to model the general the system design (e.g., concurrent communications) and the critical environment inputs (e.g., human behaviours). Correctness requirements are specified in formal logics which are automatically verifiable against a system model. Furthermore, Markov Decision Processes (MDPs) are adopted for modelling probabilistic behaviours of PvC systems. Three problems are analysed which are overall reliability prediction based on component reliabilities, reliability distribution w.r.t., how reliable should the component be to reach an overall reliability requirement and sensitivity analysis w.r.t., how does a component reliability affect the overall reliability. Finally, the usefulness of our approaches are demonstrated on a smart healthcare system with unexpected bugs and system flaws exposed.

Cite as

Yan Liu. Formal Modelling and Verification of Pervasive Computing Systems. In 1st French Singaporean Workshop on Formal Methods and Applications (FSFMA 2013). Open Access Series in Informatics (OASIcs), Volume 31, pp. 61-67, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{liu:OASIcs.FSFMA.2013.61,
  author =	{Liu, Yan},
  title =	{{Formal Modelling and Verification of Pervasive Computing Systems}},
  booktitle =	{1st French Singaporean Workshop on Formal Methods and Applications (FSFMA 2013)},
  pages =	{61--67},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-56-9},
  ISSN =	{2190-6807},
  year =	{2013},
  volume =	{31},
  editor =	{Choppy, Christine and Sun, Jun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.FSFMA.2013.61},
  URN =		{urn:nbn:de:0030-drops-40892},
  doi =		{10.4230/OASIcs.FSFMA.2013.61},
  annote =	{Keywords: System Analysis, Formal Modelling and Verification, Reliability Analysis}
}
  • Refine by Author
  • 1 Anderson, James H.
  • 1 Chambers, Erin
  • 1 Ding, Xiangyun
  • 1 Dong, Xiaojun
  • 1 Dong, Zheng
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Parallel algorithms

  • Refine by Keyword
  • 1 Burning
  • 1 Collapse
  • 1 Dynamic Programming
  • 1 Edit Distance
  • 1 Formal Modelling and Verification
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2013
  • 1 2017
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail