4 Search Results for "Molitor, Louise"


Document
The Impact of Geometry on Monochrome Regions in the Flip Schelling Process

Authors: Thomas Bläsius, Tobias Friedrich, Martin S. Krejca, and Louise Molitor

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Schelling’s classical segregation model gives a coherent explanation for the wide-spread phenomenon of residential segregation. We introduce an agent-based saturated open-city variant, the Flip Schelling Process (FSP), in which agents, placed on a graph, have one out of two types and, based on the predominant type in their neighborhood, decide whether to change their types; similar to a new agent arriving as soon as another agent leaves the vertex. We investigate the probability that an edge {u,v} is monochrome, i.e., that both vertices u and v have the same type in the FSP, and we provide a general framework for analyzing the influence of the underlying graph topology on residential segregation. In particular, for two adjacent vertices, we show that a highly decisive common neighborhood, i.e., a common neighborhood where the absolute value of the difference between the number of vertices with different types is high, supports segregation and, moreover, that large common neighborhoods are more decisive. As an application, we study the expected behavior of the FSP on two common random graph models with and without geometry: (1) For random geometric graphs, we show that the existence of an edge {u,v} makes a highly decisive common neighborhood for u and v more likely. Based on this, we prove the existence of a constant c > 0 such that the expected fraction of monochrome edges after the FSP is at least 1/2 + c. (2) For Erdős-Rényi graphs we show that large common neighborhoods are unlikely and that the expected fraction of monochrome edges after the FSP is at most 1/2 + o(1). Our results indicate that the cluster structure of the underlying graph has a significant impact on the obtained segregation strength.

Cite as

Thomas Bläsius, Tobias Friedrich, Martin S. Krejca, and Louise Molitor. The Impact of Geometry on Monochrome Regions in the Flip Schelling Process. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:LIPIcs.ISAAC.2021.29,
  author =	{Bl\"{a}sius, Thomas and Friedrich, Tobias and Krejca, Martin S. and Molitor, Louise},
  title =	{{The Impact of Geometry on Monochrome Regions in the Flip Schelling Process}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.29},
  URN =		{urn:nbn:de:0030-drops-154623},
  doi =		{10.4230/LIPIcs.ISAAC.2021.29},
  annote =	{Keywords: Agent-based Model, Schelling Segregation, Spin System}
}
Document
Fair Tree Connection Games with Topology-Dependent Edge Cost

Authors: Davide Bilò, Tobias Friedrich, Pascal Lenzner, Anna Melnichenko, and Louise Molitor

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
How do rational agents self-organize when trying to connect to a common target? We study this question with a simple tree formation game which is related to the well-known fair single-source connection game by Anshelevich et al. (FOCS'04) and selfish spanning tree games by Gourvès and Monnot (WINE'08). In our game agents correspond to nodes in a network that activate a single outgoing edge to connect to the common target node (possibly via other nodes). Agents pay for their path to the common target, and edge costs are shared fairly among all agents using an edge. The main novelty of our model is dynamic edge costs that depend on the in-degree of the respective endpoint. This reflects that connecting to popular nodes that have increased internal coordination costs is more expensive since they can charge higher prices for their routing service. In contrast to related models, we show that equilibria are not guaranteed to exist, but we prove the existence for infinitely many numbers of agents. Moreover, we analyze the structure of equilibrium trees and employ these insights to prove a constant upper bound on the Price of Anarchy as well as non-trivial lower bounds on both the Price of Anarchy and the Price of Stability. We also show that in comparison with the social optimum tree the overall cost of an equilibrium tree is more fairly shared among the agents. Thus, we prove that self-organization of rational agents yields on average only slightly higher cost per agent compared to the centralized optimum, and at the same time, it induces a more fair cost distribution. Moreover, equilibrium trees achieve a beneficial trade-off between a low height and low maximum degree, and hence these trees might be of independent interest from a combinatorics point-of-view. We conclude with a discussion of promising extensions of our model.

Cite as

Davide Bilò, Tobias Friedrich, Pascal Lenzner, Anna Melnichenko, and Louise Molitor. Fair Tree Connection Games with Topology-Dependent Edge Cost. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.FSTTCS.2020.15,
  author =	{Bil\`{o}, Davide and Friedrich, Tobias and Lenzner, Pascal and Melnichenko, Anna and Molitor, Louise},
  title =	{{Fair Tree Connection Games with Topology-Dependent Edge Cost}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.15},
  URN =		{urn:nbn:de:0030-drops-132562},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.15},
  annote =	{Keywords: Network Design Games, Spanning Tree Games, Fair Cost Sharing, Price of Anarchy, Nash Equilibrium, Algorithmic Game Theory, Combinatorics}
}
Document
A Strategic Routing Framework and Algorithms for Computing Alternative Paths

Authors: Thomas Bläsius, Maximilian Böther, Philipp Fischbeck, Tobias Friedrich, Alina Gries, Falk Hüffner, Otto Kißig, Pascal Lenzner, Louise Molitor, Leon Schiller, Armin Wells, and Simon Wietheger

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
Traditional navigation services find the fastest route for a single driver. Though always using the fastest route seems desirable for every individual, selfish behavior can have undesirable effects such as higher energy consumption and avoidable congestion, even leading to higher overall and individual travel times. In contrast, strategic routing aims at optimizing the traffic for all agents regarding a global optimization goal. We introduce a framework to formalize real-world strategic routing scenarios as algorithmic problems and study one of them, which we call Single Alternative Path (SAP), in detail. There, we are given an original route between a single origin-destination pair. The goal is to suggest an alternative route to all agents that optimizes the overall travel time under the assumption that the agents distribute among both routes according to a psychological model, for which we introduce the concept of Pareto-conformity. We show that the SAP problem is NP-complete, even for such models. Nonetheless, assuming Pareto-conformity, we give multiple algorithms for different variants of SAP, using multi-criteria shortest path algorithms as subroutines. Moreover, we prove that several natural models are in fact Pareto-conform. The implementation and evaluation of our algorithms serve as a proof of concept, showing that SAP can be solved in reasonable time even though the algorithms have exponential running time in the worst case.

Cite as

Thomas Bläsius, Maximilian Böther, Philipp Fischbeck, Tobias Friedrich, Alina Gries, Falk Hüffner, Otto Kißig, Pascal Lenzner, Louise Molitor, Leon Schiller, Armin Wells, and Simon Wietheger. A Strategic Routing Framework and Algorithms for Computing Alternative Paths. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:OASIcs.ATMOS.2020.10,
  author =	{Bl\"{a}sius, Thomas and B\"{o}ther, Maximilian and Fischbeck, Philipp and Friedrich, Tobias and Gries, Alina and H\"{u}ffner, Falk and Ki{\ss}ig, Otto and Lenzner, Pascal and Molitor, Louise and Schiller, Leon and Wells, Armin and Wietheger, Simon},
  title =	{{A Strategic Routing Framework and Algorithms for Computing Alternative Paths}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{10:1--10:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.10},
  URN =		{urn:nbn:de:0030-drops-131469},
  doi =		{10.4230/OASIcs.ATMOS.2020.10},
  annote =	{Keywords: Routing, Strategic Routing, Selfish Routing, Route Planning, Network Flow, Algorithm Design}
}
Document
Topological Influence and Locality in Swap Schelling Games

Authors: Davide Bilò, Vittorio Bilò, Pascal Lenzner, and Louise Molitor

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Residential segregation is a wide-spread phenomenon that can be observed in almost every major city. In these urban areas residents with different racial or socioeconomic background tend to form homogeneous clusters. Schelling’s famous agent-based model for residential segregation explains how such clusters can form even if all agents are tolerant, i.e., if they agree to live in mixed neighborhoods. For segregation to occur, all it needs is a slight bias towards agents preferring similar neighbors. Very recently, Schelling’s model has been investigated from a game-theoretic point of view with selfish agents that strategically select their residential location. In these games, agents can improve on their current location by performing a location swap with another agent who is willing to swap. We significantly deepen these investigations by studying the influence of the underlying topology modeling the residential area on the existence of equilibria, the Price of Anarchy and on the dynamic properties of the resulting strategic multi-agent system. Moreover, as a new conceptual contribution, we also consider the influence of locality, i.e., if the location swaps are restricted to swaps of neighboring agents. We give improved almost tight bounds on the Price of Anarchy for arbitrary underlying graphs and we present (almost) tight bounds for regular graphs, paths and cycles. Moreover, we give almost tight bounds for grids, which are commonly used in empirical studies. For grids we also show that locality has a severe impact on the game dynamics.

Cite as

Davide Bilò, Vittorio Bilò, Pascal Lenzner, and Louise Molitor. Topological Influence and Locality in Swap Schelling Games. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.MFCS.2020.15,
  author =	{Bil\`{o}, Davide and Bil\`{o}, Vittorio and Lenzner, Pascal and Molitor, Louise},
  title =	{{Topological Influence and Locality in Swap Schelling Games}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.15},
  URN =		{urn:nbn:de:0030-drops-126841},
  doi =		{10.4230/LIPIcs.MFCS.2020.15},
  annote =	{Keywords: Residential Segregation, Schelling’s Segregation Model, Non-cooperative Games, Price of Anarchy, Game Dynamics}
}
  • Refine by Author
  • 4 Molitor, Louise
  • 3 Friedrich, Tobias
  • 3 Lenzner, Pascal
  • 2 Bilò, Davide
  • 2 Bläsius, Thomas
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Algorithmic game theory
  • 2 Theory of computation → Convergence and learning in games
  • 2 Theory of computation → Network formation
  • 2 Theory of computation → Quality of equilibria
  • 1 Theory of computation → Network games
  • Show More...

  • Refine by Keyword
  • 2 Price of Anarchy
  • 1 Agent-based Model
  • 1 Algorithm Design
  • 1 Algorithmic Game Theory
  • 1 Combinatorics
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail