3 Search Results for "Yang, Nan"


Document
On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Authors: Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We consider the min-max graph balancing problem with strict negative correlation (SNC) constraints. The graph balancing problem arises as an equivalent formulation of the classic unrelated machine scheduling problem, where we are given a hypergraph G = (V,E) with vertex-dependent edge weight function p: E×V ↦ ℤ^{≥0} that represents the processing time of the edges (jobs). The SNC constraints, which are given as edge subsets C_1,C_2,…,C_k, require that the edges in the same subset cannot be assigned to the same vertex at the same time. Under these constraints, the goal is to compute an edge orientation (assignment) that minimizes the maximum workload of the vertices. In this paper, we conduct a general study on the approximability of this problem. First, we show that, in the presence of SNC constraints, the case with max_{e ∈ E} |e| = max_i |C_i| = 2 is the only case for which approximation solutions can be obtained. Further generalization on either direction, e.g., max_{e ∈ E} |e| or max_i |C_i|, will directly make computing a feasible solution an NP-complete problem to solve. Then, we present a 2-approximation algorithm for the case with max_{e ∈ E} |e| = max_i |C_i| = 2, based on a set of structural simplifications and a tailored assignment LP for this problem. We note that our approach is general and can be applied to similar settings, e.g., scheduling with SNC constraints to minimize the weighted completion time, to obtain similar approximation guarantees. Further cases are discussed to describe the landscape of the approximability of this prbolem. For the case with |V| ≤ 2, which is already known to be NP-hard, we present a fully-polynomial time approximation scheme (FPTAS). On the other hand, we show that the problem is at least as hard as vertex cover to approximate when |V| ≥ 3.

Cite as

Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao. On Min-Max Graph Balancing with Strict Negative Correlation Constraints. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 50:1-50:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kuo_et_al:LIPIcs.ISAAC.2023.50,
  author =	{Kuo, Ting-Yu and Chen, Yu-Han and Frosini, Andrea and Hsieh, Sun-Yuan and Tsai, Shi-Chun and Kao, Mong-Jen},
  title =	{{On Min-Max Graph Balancing with Strict Negative Correlation Constraints}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{50:1--50:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.50},
  URN =		{urn:nbn:de:0030-drops-193524},
  doi =		{10.4230/LIPIcs.ISAAC.2023.50},
  annote =	{Keywords: Unrelated Scheduling, Graph Balancing, Strict Correlation Constraints}
}
Document
Practical Relativistic Zero-Knowledge for NP

Authors: Claude Crépeau, Arnaud Y. Massenet, Louis Salvail, Lucas Shigeru Stinchcombe, and Nan Yang

Published in: LIPIcs, Volume 163, 1st Conference on Information-Theoretic Cryptography (ITC 2020)


Abstract
In a Multi-Prover environment, how little spatial separation is sufficient to assert the validity of an NP statement in Perfect Zero-Knowledge ? We exhibit a set of two novel Zero-Knowledge protocols for the 3-COLorability problem that use two (local) provers or three (entangled) provers and only require exchanging one edge and two bits with two trits per prover. This greatly improves the ability to prove Zero-Knowledge statements on very short distances with very basic communication gear.

Cite as

Claude Crépeau, Arnaud Y. Massenet, Louis Salvail, Lucas Shigeru Stinchcombe, and Nan Yang. Practical Relativistic Zero-Knowledge for NP. In 1st Conference on Information-Theoretic Cryptography (ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 163, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{crepeau_et_al:LIPIcs.ITC.2020.4,
  author =	{Cr\'{e}peau, Claude and Massenet, Arnaud Y. and Salvail, Louis and Stinchcombe, Lucas Shigeru and Yang, Nan},
  title =	{{Practical Relativistic Zero-Knowledge for NP}},
  booktitle =	{1st Conference on Information-Theoretic Cryptography (ITC 2020)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-151-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{163},
  editor =	{Tauman Kalai, Yael and Smith, Adam D. and Wichs, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2020.4},
  URN =		{urn:nbn:de:0030-drops-121091},
  doi =		{10.4230/LIPIcs.ITC.2020.4},
  annote =	{Keywords: Multi-Prover Interactive Proofs, Relativistic Commitments, 3-COLorability, Quantum Entanglement, Non-Locality}
}
Document
The RGB No-Signalling Game

Authors: Xavier Coiteux-Roy and Claude Crépeau

Published in: LIPIcs, Volume 135, 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)


Abstract
Introducing the simplest of all No-Signalling Games: the RGB Game where two verifiers interrogate two provers, Alice and Bob, far enough from each other that communication between them is too slow to be possible. Each prover may be independently queried one of three possible colours: Red, Green or Blue. Let a be the colour announced to Alice and b be announced to Bob. To win the game they must reply colours x (resp. y) such that a != x != y != b. This work focuses on this new game mainly as a pedagogical tool for its simplicity but also because it triggered us to introduce a new set of definitions for reductions among multi-party probability distributions and related non-locality classes. We show that a particular winning strategy for the RGB Game is equivalent to the PR-Box of Popescu-Rohrlich and thus No-Signalling. Moreover, we use this example to define No-Signalling in a new useful way, as the intersection of two natural classes of multi-party probability distributions called one-way signalling. We exhibit a quantum strategy able to beat the classical local maximum winning probability of 8/9 shifting it up to 11/12. Optimality of this quantum strategy is demonstrated using the standard tool of semidefinite programming.

Cite as

Xavier Coiteux-Roy and Claude Crépeau. The RGB No-Signalling Game. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 135, pp. 4:1-4:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{coiteuxroy_et_al:LIPIcs.TQC.2019.4,
  author =	{Coiteux-Roy, Xavier and Cr\'{e}peau, Claude},
  title =	{{The RGB No-Signalling Game}},
  booktitle =	{14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)},
  pages =	{4:1--4:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-112-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{135},
  editor =	{van Dam, Wim and Man\v{c}inska, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2019.4},
  URN =		{urn:nbn:de:0030-drops-103965},
  doi =		{10.4230/LIPIcs.TQC.2019.4},
  annote =	{Keywords: No-Signalling, Quantum Entanglement, Non-Locality, Bell inequality, Semidefinite Programming, Non-locality Hierarchy}
}
  • Refine by Author
  • 2 Crépeau, Claude
  • 1 Chen, Yu-Han
  • 1 Coiteux-Roy, Xavier
  • 1 Frosini, Andrea
  • 1 Hsieh, Sun-Yuan
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Quantum information theory
  • 1 Theory of computation → Scheduling algorithms

  • Refine by Keyword
  • 2 Non-Locality
  • 2 Quantum Entanglement
  • 1 3-COLorability
  • 1 Bell inequality
  • 1 Graph Balancing
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail