2 Search Results for "Zhang, Shufan"


Document
F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running Protection

Authors: Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa Bastankhah, Vero Estrada-Galiñanes, and Bryan Ford

Published in: LIPIcs, Volume 282, 5th Conference on Advances in Financial Technologies (AFT 2023)


Abstract
Front-running attacks, which benefit from advanced knowledge of pending transactions, have proliferated in the blockchain space since the emergence of decentralized finance. Front-running causes devastating losses to honest participants and continues to endanger the fairness of the ecosystem. We present Flash Freezing Flash Boys (F3B), a blockchain architecture that addresses front-running attacks by using threshold cryptography. In F3B, a user generates a symmetric key to encrypt their transaction, and once the underlying consensus layer has finalized the transaction, a decentralized secret-management committee reveals this key. F3B mitigates front-running attacks because, before the consensus group finalizes it, an adversary can no longer read the content of a transaction, thus preventing the adversary from benefiting from advanced knowledge of pending transactions. Unlike other mitigation systems, F3B properly ensures that all unfinalized transactions, even with significant delays, remain private by adopting per-transaction protection. Furthermore, F3B addresses front-running at the execution layer; thus, our solution is agnostic to the underlying consensus algorithm and compatible with existing smart contracts. We evaluated F3B on Ethereum with a modified execution layer and found only a negligible (0.026%) increase in transaction latency, specifically due to running threshold decryption with a 128-member secret-management committee after a transaction is finalized; this indicates that F3B is both practical and low-cost.

Cite as

Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa Bastankhah, Vero Estrada-Galiñanes, and Bryan Ford. F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running Protection. In 5th Conference on Advances in Financial Technologies (AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 282, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.AFT.2023.3,
  author =	{Zhang, Haoqian and Merino, Louis-Henri and Qu, Ziyan and Bastankhah, Mahsa and Estrada-Gali\~{n}anes, Vero and Ford, Bryan},
  title =	{{F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running Protection}},
  booktitle =	{5th Conference on Advances in Financial Technologies (AFT 2023)},
  pages =	{3:1--3:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-303-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{282},
  editor =	{Bonneau, Joseph and Weinberg, S. Matthew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.3},
  URN =		{urn:nbn:de:0030-drops-191921},
  doi =		{10.4230/LIPIcs.AFT.2023.3},
  annote =	{Keywords: Blockchain, DeFi, Front-running Mitigation}
}
Document
Recovery from Non-Decomposable Distance Oracles

Authors: Zhuangfei Hu, Xinda Li, David P. Woodruff, Hongyang Zhang, and Shufan Zhang

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0,1}^{≤ n}, and one chooses a set of queries y ∈ {0,1}^𝒪(n) and receives d(s,y) for a distance function d. The goal is to make as few queries as possible to recover s. Although this problem is well-studied for decomposable distances, i.e., distances of the form d(s,y) = ∑_{i=1}^n f(s_i, y_i) for some function f, which includes the important cases of Hamming distance, 𝓁_p-norms, and M-estimators, to the best of our knowledge this problem has not been studied for non-decomposable distances, for which there are important special cases such as edit distance, dynamic time warping (DTW), Fréchet distance, earth mover’s distance, and so on. We initiate the study and develop a general framework for such distances. Interestingly, for some distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. We also study the role of adaptivity for a number of different distance functions. One motivation for understanding non-adaptivity is that the query sequence can be fixed and the distances of the input to the queries provide a non-linear embedding of the input, which can be used in downstream applications involving, e.g., neural networks for natural language processing.

Cite as

Zhuangfei Hu, Xinda Li, David P. Woodruff, Hongyang Zhang, and Shufan Zhang. Recovery from Non-Decomposable Distance Oracles. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 73:1-73:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ITCS.2023.73,
  author =	{Hu, Zhuangfei and Li, Xinda and Woodruff, David P. and Zhang, Hongyang and Zhang, Shufan},
  title =	{{Recovery from Non-Decomposable Distance Oracles}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{73:1--73:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.73},
  URN =		{urn:nbn:de:0030-drops-175767},
  doi =		{10.4230/LIPIcs.ITCS.2023.73},
  annote =	{Keywords: Sequence Recovery, Edit Distance, DTW Distance, Fr\'{e}chet Distance}
}
  • Refine by Author
  • 1 Bastankhah, Mahsa
  • 1 Estrada-Galiñanes, Vero
  • 1 Ford, Bryan
  • 1 Hu, Zhuangfei
  • 1 Li, Xinda
  • Show More...

  • Refine by Classification
  • 1 Security and privacy → Distributed systems security
  • 1 Theory of computation → Algorithm design techniques
  • 1 Theory of computation → Lower bounds and information complexity
  • 1 Theory of computation → Parameterized complexity and exact algorithms

  • Refine by Keyword
  • 1 Blockchain
  • 1 DTW Distance
  • 1 DeFi
  • 1 Edit Distance
  • 1 Front-running Mitigation
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail