Constraint satisfaction problems (CSP) encompass an enormous variety of computational problems. In particular, all partition functions from statistical physics, such as spin systems, are special cases of counting CSP (#CSP). We prove a complete complexity classification for every counting problem in #CSP with nonnegative valued constraint functions that is valid when every variable occurs a bounded number of times in all constraints. We show that, depending on the set of constraint functions ℱ, every problem in the complexity class #CSP(ℱ) defined by ℱ is either polynomial time computable for all instances without the bounded occurrence restriction, or is #P-hard even when restricted to bounded degree input instances. The constant bound in the degree depends on ℱ. The dichotomy criterion on ℱ is decidable. As a second contribution, we prove a slightly modified but more streamlined decision procedure (from [Jin-Yi Cai et al., 2011]) for tractability. This enables us to fully classify a family of directed weighted graph homomorphism problems. This family contains both P-time tractable problems and #P-hard problems. To our best knowledge, this is the first family of such problems explicitly classified that are not acyclic, thereby the Lovász-goodness criterion of Dyer-Goldberg-Paterson [Martin E. Dyer et al., 2006] cannot be applied.
@InProceedings{cai_et_al:LIPIcs.MFCS.2022.27, author = {Cai, Jin-Yi and Szabo, Daniel P.}, title = {{Bounded Degree Nonnegative Counting CSP}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {27:1--27:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.27}, URN = {urn:nbn:de:0030-drops-168250}, doi = {10.4230/LIPIcs.MFCS.2022.27}, annote = {Keywords: Computational Counting Complexity, Constraint Satisfaction Problems, Counting CSPs, Complexity Dichotomy, Nonnegative Counting CSP, Graph Homomorphisms} }