License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.47
URN: urn:nbn:de:0030-drops-171695
Go to the corresponding LIPIcs Volume Portal

Ghoshal, Suprovat

The Biased Homogeneous r-Lin Problem

LIPIcs-APPROX47.pdf (0.7 MB)


The p-biased Homogeneous r-Lin problem (Hom-r-Lin_p) is the following: given a homogeneous system of r-variable equations over m{F}₂, the goal is to find an assignment of relative weight p that satisfies the maximum number of equations. In a celebrated work, Håstad (JACM 2001) showed that the unconstrained variant of this i.e., Max-3-Lin, is hard to approximate beyond a factor of 1/2. This is also tight due to the naive random guessing algorithm which sets every variable uniformly from {0,1}. Subsequently, Holmerin and Khot (STOC 2004) showed that the same holds for the balanced Hom-r-Lin problem as well. In this work, we explore the approximability of the Hom-r-Lin_p problem beyond the balanced setting (i.e., p ≠ 1/2), and investigate whether the (p-biased) random guessing algorithm is optimal for every p. Our results include the following:
- The Hom-r-Lin_p problem has no efficient 1/2 + 1/2 (1 - 2p)^{r-2} + ε-approximation algorithm for every p if r is even, and for p ∈ (0,1/2] if r is odd, unless NP ⊂ ∪_{ε>0}DTIME(2^{n^ε}).
- For any r and any p, there exists an efficient 1/2 (1 - e^{-2})-approximation algorithm for Hom-r-Lin_p. We show that this is also tight for odd values of r (up to o_r(1)-additive factors) assuming the Unique Games Conjecture. Our results imply that when r is even, then for large values of r, random guessing is near optimal for every p. On the other hand, when r is odd, our results illustrate an interesting contrast between the regimes p ∈ (0,1/2) (where random guessing is near optimal) and p → 1 (where random guessing is far from optimal). A key technical contribution of our work is a generalization of Håstad’s 3-query dictatorship test to the p-biased setting.

BibTeX - Entry

  author =	{Ghoshal, Suprovat},
  title =	{{The Biased Homogeneous r-Lin Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{47:1--47:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-171695},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.47},
  annote =	{Keywords: Biased Approximation Resistance, Constraint Satisfaction Problems}

Keywords: Biased Approximation Resistance, Constraint Satisfaction Problems
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Issue Date: 2022
Date of publication: 15.09.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI