Tight Algorithms for Connectivity Problems Parameterized by Clique-Width

Authors Falko Hegerfeld , Stefan Kratsch



PDF
Thumbnail PDF

File

LIPIcs.ESA.2023.59.pdf
  • Filesize: 0.92 MB
  • 19 pages

Document Identifiers

Author Details

Falko Hegerfeld
  • Humboldt-Universität zu Berlin, Germany
Stefan Kratsch
  • Humboldt-Universität zu Berlin, Germany

Cite AsGet BibTex

Falko Hegerfeld and Stefan Kratsch. Tight Algorithms for Connectivity Problems Parameterized by Clique-Width. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 59:1-59:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ESA.2023.59

Abstract

The complexity of problems involving global constraints is usually much more difficult to understand than the complexity of problems only involving local constraints. In the realm of graph problems, connectivity constraints are a natural form of global constraints. We study connectivity problems from a fine-grained parameterized perspective. In a breakthrough result, Cygan et al. (TALG 2022) first obtained Monte-Carlo algorithms with single-exponential running time α^{tw} n^𝒪(1) for connectivity problems parameterized by treewidth by introducing the cut-and-count-technique, which reduces many connectivity problems to locally checkable counting problems. Furthermore, the obtained bases α were shown to be optimal under the Strong Exponential-Time Hypothesis (SETH). However, since only sparse graphs may admit small treewidth, we lack knowledge of the fine-grained complexity of connectivity problems with respect to dense structure. The most popular graph parameter to measure dense structure is arguably clique-width, which intuitively measures how easily a graph can be constructed by repeatedly adding bicliques. Bergougnoux and Kanté (TCS 2019) have shown, using the rank-based approach, that also parameterized by clique-width many connectivity problems admit single-exponential algorithms. Unfortunately, the obtained running times are far from optimal under SETH. We show how to obtain optimal running times parameterized by clique-width for two benchmark connectivity problems, namely Connected Vertex Cover and Connected Dominating Set. These are the first tight results for connectivity problems with respect to clique-width and these results are obtained by developing new algorithms based on the cut-and-count-technique and novel lower bound constructions. Precisely, we show that there exist one-sided error Monte-Carlo algorithms that given a k-clique-expression solve - Connected Vertex Cover in time 6^k n^𝒪(1), and - Connected Dominating Set in time 5^k n^𝒪(1). Both results are shown to be tight under SETH.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Paths and connectivity problems
  • Theory of computation → Parameterized complexity and exact algorithms
  • Mathematics of computing → Combinatorial algorithms
Keywords
  • Parameterized Complexity
  • Connectivity
  • Clique-width
  • Cut&Count
  • Lower Bound

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522-539. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.32.
  2. Benjamin Bergougnoux. Matrix decompositions and algorithmic applications to (hyper)graphs. PhD thesis, University of Clermont Auvergne, Clermont-Ferrand, France, 2019. URL: https://tel.archives-ouvertes.fr/tel-02388683.
  3. Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. A logic-based algorithmic meta-theorem for mim-width, pages 3282-3304. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch125.
  4. Benjamin Bergougnoux and Mamadou Moustapha Kanté. Fast exact algorithms for some connectivity problems parameterized by clique-width. Theor. Comput. Sci., 782:30-53, 2019. URL: https://doi.org/10.1016/j.tcs.2019.02.030.
  5. Benjamin Bergougnoux and Mamadou Moustapha Kanté. More applications of the d-neighbor equivalence: Acyclicity and connectivity constraints. SIAM J. Discret. Math., 35(3):1881-1926, 2021. URL: https://doi.org/10.1137/20M1350571.
  6. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed moebius inversion and graphs of bounded degree. Theory Comput. Syst., 47(3):637-654, 2010. URL: https://doi.org/10.1007/s00224-009-9185-7.
  7. Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Jesper Nederlof, and Pekka Parviainen. Fast zeta transforms for lattices with few irreducibles. ACM Trans. Algorithms, 12(1):4:1-4:19, 2016. URL: https://doi.org/10.1145/2629429.
  8. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86-111, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.008.
  9. Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. Tight bounds for connectivity problems parameterized by cutwidth. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 14:1-14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.STACS.2023.14.
  10. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 75-85. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-11269-0_6.
  11. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discret. Appl. Math., 101(1-3):77-114, 2000. URL: https://doi.org/10.1016/S0166-218X(99)00184-5.
  12. Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting hamiltonian cycles via matrix rank. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1080-1099. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.70.
  13. Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1-12:46, 2018. URL: https://doi.org/10.1145/3148227.
  14. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150-159. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.23.
  15. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. CoRR, abs/1103.0534, 2011. URL: https://arxiv.org/abs/1103.0534.
  16. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1-17:31, 2022. URL: https://doi.org/10.1145/3506707.
  17. Guillaume Ducoffe. Maximum matching in almost linear time on graphs of bounded clique-width. Algorithmica, 84(11):3489-3520, 2022. URL: https://doi.org/10.1007/s00453-022-00999-9.
  18. Fedor V. Fomin and Tuukka Korhonen. Fast fpt-approximation of branchwidth. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 886-899. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519996.
  19. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1-29:60, 2016. URL: https://doi.org/10.1145/2886094.
  20. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative families of product families. ACM Trans. Algorithms, 13(3):36:1-36:29, 2017. URL: https://doi.org/10.1145/3039243.
  21. Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov. The fine-grained complexity of graph homomorphism parameterized by clique-width. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 66:1-66:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.66.
  22. Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. Tight bounds for counting colorings and connected edge sets parameterized by cutwidth. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 36:1-36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.36.
  23. Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth in single-exponential time and polynomial space. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 29:1-29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.29.
  24. Falko Hegerfeld and Stefan Kratsch. Towards exact structural thresholds for parameterized complexity. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 17:1-17:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.17.
  25. Falko Hegerfeld and Stefan Kratsch. Tight algorithms for connectivity problems parameterized by clique-width. CoRR, abs/2302.03627, 2023. URL: https://doi.org/10.48550/arXiv.2302.03627.
  26. Falko Hegerfeld and Stefan Kratsch. Tight algorithms for connectivity problems parameterized by modular-treewidth. CoRR, abs/2302.14128, 2023. URL: https://doi.org/10.48550/arXiv.2302.14128.
  27. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  28. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
  29. Yoichi Iwata and Yuichi Yoshida. On the equivalence among problems of bounded width. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 754-765. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_63.
  30. Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close relatives (of feedback vertex set), revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.21.
  31. Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph decompositions via matrix rank. Theor. Comput. Sci., 795:520-539, 2019. URL: https://doi.org/10.1016/j.tcs.2019.08.006.
  32. Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight bounds, and approximation for (k, r)-center. Discrete Applied Mathematics, 264:90-117, 2019. URL: https://doi.org/10.1016/j.dam.2018.11.002.
  33. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer, 1994. URL: https://doi.org/10.1007/BFb0045375.
  34. Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538-1558, 2020. URL: https://doi.org/10.1137/19M1280326.
  35. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018. URL: https://doi.org/10.1145/3170442.
  36. Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7(1):105-113, 1987. URL: https://doi.org/10.1007/BF02579206.
  37. Jesper Nederlof. Algorithms for np-hard problems via rank-related parameters of matrices. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 145-164. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-42071-0_11.
  38. Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamiltonian cycle parameterized by treedepth in single exponential time and polynomial space. In Isolde Adler and Haiko Müller, editors, Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected Papers, volume 12301 of Lecture Notes in Computer Science, pages 27-39. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-60440-0_3.
  39. Jesper Nederlof, Johan M. M. van Rooij, and Thomas C. van Dijk. Inclusion/exclusion meets measure and conquer. Algorithmica, 69(3):685-740, 2014. URL: https://doi.org/10.1007/s00453-013-9759-2.
  40. Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb. Theory, Ser. B, 96(4):514-528, 2006. URL: https://doi.org/10.1016/j.jctb.2005.10.006.
  41. Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1-18:36, 2018. URL: https://doi.org/10.1145/3154856.
  42. Willem J. A. Pino, Hans L. Bodlaender, and Johan M. M. van Rooij. Cut and count and representative sets on branch decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 27:1-27:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.27.
  43. Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566-577. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04128-0_51.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail