Parameterized Complexity of Equality MinCSP

Authors George Osipov , Magnus Wahlström



PDF
Thumbnail PDF

File

LIPIcs.ESA.2023.86.pdf
  • Filesize: 0.82 MB
  • 17 pages

Document Identifiers

Author Details

George Osipov
  • Department of Computer and Information Science, Linköping University, Sweden
Magnus Wahlström
  • Department of Computer Science, Royal Holloway, University of London, UK

Cite AsGet BibTex

George Osipov and Magnus Wahlström. Parameterized Complexity of Equality MinCSP. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 86:1-86:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ESA.2023.86

Abstract

We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as ℕ, where the relations are defined via first-order formulas whose only predicate is =. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP(Γ) for every finite equality language Γ, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the "cut requests" come as disjunctions over O(1) individual cut requests s_i ≠ t_i. We also consider singleton expansions of equality languages, enriching an equality language with the capability for assignment constraints (x = i) for either a finite or infinitely many constants i, and fully characterize the complexity of the resulting MinCSP.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • parameterized complexity
  • constraint satisfaction
  • parameterized approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to use them. In The Constraint Satisfaction Problem, volume 7 of Dagstuhl Follow-Ups, pages 1-44. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  2. Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest vector problem. J. ACM, 68(3):16:1-16:40, 2021. Google Scholar
  3. Manuel Bodirsky. Constraint satisfaction with infinite domains. PhD thesis, Humboldt University of Berlin, Unter den Linden, Germany, 2004. Google Scholar
  4. Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Lecture Notes in Logic (LNL). Cambridge University Press, 2021. URL: https://doi.org/10.1017/9781107337534.
  5. Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to primitive positive interdefinability. J. Symb. Log., 75(4):1249-1292, 2010. Google Scholar
  6. Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 184-196. Springer, 2008. Google Scholar
  7. Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of Computing Systems, 43(2):136-158, 2008. Google Scholar
  8. Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems. J. ACM, 57(2):9:1-9:41, 2010. Google Scholar
  9. Manuel Bodirsky and Marcello Mamino. Constraint satisfaction problems over numeric domains. In The Constraint Satisfaction Problem, volume 7 of Dagstuhl Follow-Ups, pages 79-111. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  10. Manuel Bodirsky, Barnaby Martin, and Antoine Mottet. Discrete temporal constraint satisfaction problems. J. ACM, 65(2):9:1-9:41, 2018. Google Scholar
  11. Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. J. ACM, 62(3):19:1-19:52, 2015. Google Scholar
  12. Édouard Bonnet, László Egri, and Dániel Marx. Fixed-parameter approximability of Boolean MinCSPs. In 24th Annual European Symposium on Algorithms (ESA 2016), pages 18:1-18:18, 2016. Google Scholar
  13. Édouard Bonnet, László Egri, Bingkai Lin, and Dániel Marx. Fixed-parameter approximability of boolean MinCSPs, 2018. URL: https://doi.org/10.48550/arXiv.1601.04935.
  14. Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput., 47(1):166-207, 2018. URL: https://doi.org/10.1137/140961808.
  15. Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan Van Leeuwen. Parameterized complexity dichotomy for Steiner multicut. Journal of Computer and System Sciences, 82(6):1020-1043, 2016. Google Scholar
  16. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In FOCS, pages 319-330. IEEE Computer Society, 2017. Google Scholar
  17. Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 612-623. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00064.
  18. Rajesh Chitnis, Marek Cygan, Mohammataghi Hajiaghayi, and Dániel Marx. Directed subset feedback vertex set is fixed-parameter tractable. ACM Transactions on Algorithms (TALG), 11(4):1-28, 2015. Google Scholar
  19. Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of parameterized algorithms and the complexity of edge modification, 2020. URL: https://arxiv.org/abs/2001.06867.
  20. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015. Google Scholar
  21. Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above lower bounds. ACM Transactions on Computation Theory (TOCT), 5(1):1-11, 2013. Google Scholar
  22. Konrad K Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström. Almost consistent systems of linear equations. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3179-3217. SIAM, 2023. Google Scholar
  23. Eduard Eiben, Clément Rambaud, and Magnus Wahlström. On the parameterized complexity of symmetric directed multicut. In IPEC, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  24. Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020. Google Scholar
  25. Peter Jonsson. Constants and finite unary relations in qualitative constraint reasoning. Artif. Intell., 257:1-23, 2018. Google Scholar
  26. Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized k-clique. In CCC, volume 234 of LIPIcs, pages 6:1-6:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  27. Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 767-775, 2002. Google Scholar
  28. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard cut problems via flow-augmentation. arXiv e-prints, pages arXiv-2007, 2020. Google Scholar
  29. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation III: complexity dichotomy for boolean CSPs parameterized by the number of unsatisfied constraints. In SODA, pages 3218-3228. SIAM, 2023. Google Scholar
  30. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation III: Complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied constraints. arXiv preprint, 2023. URL: https://arxiv.org/abs/2207.07422.
  31. Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-valued CSPs. SIAM J. Comput., 46(3):1087-1110, 2017. Google Scholar
  32. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. Journal of the ACM (JACM), 67(3):1-50, 2020. Google Scholar
  33. Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 85-92. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00017.
  34. Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameterized k-SETCOVER is W[2]-hard. In SODA, pages 3305-3316. SIAM, 2023. Google Scholar
  35. Daniel Lokshtanov, Pranabendu Misra, MS Ramanujan, Saket Saurabh, and Meirav Zehavi. FPT-approximation for FPT problems. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 199-218. SIAM, 2021. Google Scholar
  36. Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406, 2006. URL: https://doi.org/10.1016/j.tcs.2005.10.007.
  37. Daniel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM Journal on Computing, 43(2):355, 2014. Google Scholar
  38. Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1-37:33, 2016. Google Scholar
  39. Magnus Wahlström. Quasipolynomial multicut-mimicking networks and kernels for multiway cut problems. ACM Trans. Algorithms, 18(2):15:1-15:19, 2022. Google Scholar
  40. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail