Obstructions for Matroids of Path-Width at most k and Graphs of Linear Rank-Width at most k

Authors Mamadou Moustapha Kanté , Eun Jung Kim , O-joung Kwon , Sang-il Oum



PDF
Thumbnail PDF

File

LIPIcs.STACS.2022.40.pdf
  • Filesize: 0.71 MB
  • 14 pages

Document Identifiers

Author Details

Mamadou Moustapha Kanté
  • Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Aubière, France
Eun Jung Kim
  • Université Paris-Dauphine, PSL University, CNRS, UMR 7243, LAMSADE, Paris, France
O-joung Kwon
  • Department of Mathematics, Incheon National University, Incheon, South Korea
  • Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
Sang-il Oum
  • Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
  • Department of Mathematical Sciences, KAIST, Daejeon, South Korea

Cite AsGet BibTex

Mamadou Moustapha Kanté, Eun Jung Kim, O-joung Kwon, and Sang-il Oum. Obstructions for Matroids of Path-Width at most k and Graphs of Linear Rank-Width at most k. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 40:1-40:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.STACS.2022.40

Abstract

Every minor-closed class of matroids of bounded branch-width can be characterized by a minimal list of excluded minors, but unlike graphs, this list could be infinite in general. However, for each fixed finite field F, the list contains only finitely many F-representable matroids, due to the well-quasi-ordering of F-representable matroids of bounded branch-width under taking matroid minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive and does not provide any algorithm for computing these F-representable excluded minors in general. We consider the class of matroids of path-width at most k for fixed k. We prove that for a finite field F, every F-representable excluded minor for the class of matroids of path-width at most k has at most 2^{|𝔽|^{O(k²)}} elements. We can therefore compute, for any integer k and a fixed finite field F, the set of F-representable excluded minors for the class of matroids of path-width k, and this gives as a corollary a polynomial-time algorithm for checking whether the path-width of an F-represented matroid is at most k. We also prove that every excluded pivot-minor for the class of graphs having linear rank-width at most k has at most 2^{2^{O(k²)}} vertices, which also results in a similar algorithmic consequence for linear rank-width of graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • path-width
  • matroid
  • linear rank-width
  • graph
  • forbidden minor
  • vertex-minor
  • pivot-minor

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Obstructions for linear rank-width at most 1. Discrete Appl. Math., 168:3-13, 2014. URL: https://doi.org/10.1016/j.dam.2013.05.001.
  2. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996. URL: https://doi.org/10.1006/jagm.1996.0049.
  3. Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Inform. and Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  4. Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a conjecture by Seese. J. Combin. Theory Ser. B, 97(1):91-126, 2007. URL: https://doi.org/10.1016/j.jctb.2006.04.003.
  5. James F. Geelen, A. M. H. Gerards, Neil Robertson, and Geoff Whittle. On the excluded minors for the matroids of branch-width k. J. Combin. Theory Ser. B, 88(2):261-265, 2003. URL: https://doi.org/10.1016/S0095-8956(02)00046-1.
  6. James F. Geelen, A. M. H. Gerards, and Geoff Whittle. Branch-width and well-quasi-ordering in matroids and graphs. J. Combin. Theory Ser. B, 84(2):270-290, 2002. URL: https://doi.org/10.1006/jctb.2001.2082.
  7. Petr Hliněný. The Tutte polynomial for matroids of bounded branch-width. Combin. Probab. Comput., 15(3):397-409, 2006. URL: https://doi.org/10.1017/S0963548305007297.
  8. Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of matroids. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 1695-1704, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics. URL: https://doi.org/10.1137/1.9781611974331.ch116.
  9. Jisu Jeong, Eun Jung Kim, and Sang-il Oum. The "art of trellis decoding" is fixed-parameter tractable. IEEE Trans. Inform. Theory, 63(11):7178-7205, 2017. An extended abstract appeared in a conference proceeding [Jeong et al., 2016]. URL: https://doi.org/10.1109/TIT.2017.2740283.
  10. Jisu Jeong, O-joung Kwon, and Sang-il Oum. Excluded vertex-minors for graphs of linear rank-width at most k. In Natacha Portier and Thomas Wilke, editors, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz International Proceedings in Informatics (LIPIcs), pages 221-232, Kiel, Germany, 2013. Schloss Dagstuhl. Leibniz-Zent. Inform. URL: https://doi.org/10.4230/LIPIcs.STACS.2013.221.
  11. Jisu Jeong, O-joung Kwon, and Sang-il Oum. Excluded vertex-minors for graphs of linear rank-width at most k. European J. Combin., 41:242-257, 2014. URL: https://doi.org/10.1016/j.ejc.2014.04.010.
  12. Mamadou Moustapha Kanté and O-joung Kwon. Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions. European J. Combin., 74:110-139, 2018. URL: https://doi.org/10.1016/j.ejc.2018.07.009.
  13. Athanassios Koutsonas, Dimitrios M. Thilikos, and Koichi Yamazaki. Outerplanar obstructions for matroid pathwidth. Discrete Math., 315-316:95-101, 2014. URL: https://doi.org/10.1016/j.disc.2013.10.007.
  14. Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Combin. Theory Ser. B, 73(1):7-40, 1998. URL: https://doi.org/10.1006/jctb.1997.1788.
  15. Hiroshi Nagamochi. Linear layouts in submodular systems. In Kun-Mao Chao, Tsan-Sheng Hsu, and Der-Tsai Lee, editors, ISAAC '12, volume 7676 of Lecture Notes in Comput. Sci., pages 475-484. Springer Berlin Heidelberg, 2012. URL: https://doi.org/10.1007/978-3-642-35261-4_50.
  16. Sang-il Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B, 95(1):79-100, 2005. URL: https://doi.org/10.1016/j.jctb.2005.03.003.
  17. Sang-il Oum and Paul Seymour. Approximating clique-width and banch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006. URL: https://doi.org/10.1016/j.jctb.2005.10.006.
  18. James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011. Google Scholar
  19. Neil Robertson and Paul Seymour. Graph minors. IV. Tree-width and well-quasi-ordering. J. Combin. Theory Ser. B, 48(2):227-254, 1990. URL: https://doi.org/10.1016/0095-8956(90)90120-O.
  20. Neil Robertson and Paul Seymour. Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B, 92(2):325-357, 2004. URL: https://doi.org/10.1016/j.jctb.2004.08.001.
  21. William T. Tutte. Menger’s theorem for matroids. J. Res. Nat. Bur. Standards Sect. B, 69B:49-53, 1965. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail