Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Fuladi, Niloufar; Hubard, Alfredo; de Mesmay, Arnaud https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-160492
URL:

; ;

Short Topological Decompositions of Non-Orientable Surfaces

pdf-format:


Abstract

We investigate short topological decompositions of non-orientable surfaces and provide algorithms to compute them. Our main result is a polynomial-time algorithm that for any graph embedded in a non-orientable surface computes a canonical non-orientable system of loops so that any loop from the canonical system intersects any edge of the graph in at most 30 points. The existence of such short canonical systems of loops was well known in the orientable case and an open problem in the non-orientable case. Our proof techniques combine recent work of Schaefer-Štefankovič with ideas coming from computational biology, specifically from the signed reversal distance algorithm of Hannenhalli-Pevzner. This result confirms a special case of a conjecture of Negami on the joint crossing number of two embeddable graphs. We also provide a correction for an argument of Negami bounding the joint crossing number of two non-orientable graph embeddings.

BibTeX - Entry

@InProceedings{fuladi_et_al:LIPIcs.SoCG.2022.41,
  author =	{Fuladi, Niloufar and Hubard, Alfredo and de Mesmay, Arnaud},
  title =	{{Short Topological Decompositions of Non-Orientable Surfaces}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16049},
  URN =		{urn:nbn:de:0030-drops-160492},
  doi =		{10.4230/LIPIcs.SoCG.2022.41},
  annote =	{Keywords: Computational topology, embedded graph, non-orientable surface, joint crossing number, canonical system of loop, surface decomposition}
}

Keywords: Computational topology, embedded graph, non-orientable surface, joint crossing number, canonical system of loop, surface decomposition
Seminar: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue date: 2022
Date of publication: 01.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI