Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Adjiashvili, David; Hommelsheim, Felix; Mühlenthaler, Moritz; Schaudt, Oliver https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-161659
URL:

; ; ;

Fault-Tolerant Edge-Disjoint s-t Paths - Beyond Uniform Faults

pdf-format:


Abstract

The Edge-disjoint s-t Paths Problem (s-t EDP) is a classical network design problem whose goal is to connect for some k ≥ 1 two given vertices of a graph under the condition that any k-1 edges of the graph may fail. We extend the simple uniform failure model of the s-t EDP as follows: the edge set of the graph is partitioned into vulnerable, and safe edges, and a set of at most k vulnerable edges may fail, while safe edges do not fail. In particular we study the Fault-Tolerant Path (FTP) problem, the counterpart of the Shortest s-t Path problem in this non-uniform failure model as well as the Fault-Tolerant Flow (FTF) problem, the counterpart of s-t EDP. We present complexity results alongside exact and approximation algorithms for both problems. We emphasize the vast increase in complexity of the problems compared to s-t EDP.

BibTeX - Entry

@InProceedings{adjiashvili_et_al:LIPIcs.SWAT.2022.5,
  author =	{Adjiashvili, David and Hommelsheim, Felix and M\"{u}hlenthaler, Moritz and Schaudt, Oliver},
  title =	{{Fault-Tolerant Edge-Disjoint s-t Paths - Beyond Uniform Faults}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16165},
  URN =		{urn:nbn:de:0030-drops-161659},
  doi =		{10.4230/LIPIcs.SWAT.2022.5},
  annote =	{Keywords: graph algorithms, network design, fault tolerance, approximation algorithms}
}

Keywords: graph algorithms, network design, fault tolerance, approximation algorithms
Seminar: 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)
Issue date: 2022
Date of publication: 22.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI