Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Yao, Penghui; Yin, Yitong; Zhang, Xinyuan https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-164494
URL:

; ;

Polynomial-Time Approximation of Zero-Free Partition Functions

pdf-format:


Abstract

Zero-free based algorithms are a major technique for deterministic approximate counting. In Barvinok’s original framework [Barvinok, 2017], by calculating truncated Taylor expansions, a quasi-polynomial time algorithm was given for estimating zero-free partition functions. Patel and Regts [Patel and Regts, 2017] later gave a refinement of Barvinok’s framework, which gave a polynomial-time algorithm for a class of zero-free graph polynomials that can be expressed as counting induced subgraphs in bounded-degree graphs.
In this paper, we give a polynomial-time algorithm for estimating classical and quantum partition functions specified by local Hamiltonians with bounded maximum degree, assuming a zero-free property for the temperature. Consequently, when the inverse temperature is close enough to zero by a constant gap, we have a polynomial-time approximation algorithm for all such partition functions. Our result is based on a new abstract framework that extends and generalizes the approach of Patel and Regts.

BibTeX - Entry

@InProceedings{yao_et_al:LIPIcs.ICALP.2022.108,
  author =	{Yao, Penghui and Yin, Yitong and Zhang, Xinyuan},
  title =	{{Polynomial-Time Approximation of Zero-Free Partition Functions}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{108:1--108:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16449},
  URN =		{urn:nbn:de:0030-drops-164494},
  doi =		{10.4230/LIPIcs.ICALP.2022.108},
  annote =	{Keywords: partition function, zero-freeness, local Hamiltonian}
}

Keywords: partition function, zero-freeness, local Hamiltonian
Seminar: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI