pdf-format: |
|
@InProceedings{langedal_et_al:LIPIcs.SEA.2022.12, author = {Langedal, Kenneth and Langguth, Johannes and Manne, Fredrik and Schroeder, Daniel Thilo}, title = {{Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks}}, booktitle = {20th International Symposium on Experimental Algorithms (SEA 2022)}, pages = {12:1--12:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-251-8}, ISSN = {1868-8969}, year = {2022}, volume = {233}, editor = {Schulz, Christian and U\c{c}ar, Bora}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16546}, URN = {urn:nbn:de:0030-drops-165462}, doi = {10.4230/LIPIcs.SEA.2022.12}, annote = {Keywords: Minimum weighted vertex cover, Maximum weighted independent set, Graph neural networks, Reducing-peeling} }
Keywords: | Minimum weighted vertex cover, Maximum weighted independent set, Graph neural networks, Reducing-peeling | |
Seminar: | 20th International Symposium on Experimental Algorithms (SEA 2022) | |
Issue date: | 2022 | |
Date of publication: | 11.07.2022 | |
Supplementary Material: |
Software (Source Code): https://github.com/KennethLangedal/GNN-MWVC Dataset (Results): https://github.com/KennethLangedal/MWVC-GNN-LS |