Search Results

Documents authored by Alekseev, Yaroslav


Document
Tropical Proof Systems: Between R(CP) and Resolution

Authors: Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Propositional proof complexity deals with the lengths of polynomial-time verifiable proofs for Boolean tautologies. An abundance of proof systems is known, including algebraic and semialgebraic systems, which work with polynomial equations and inequalities, respectively. The most basic algebraic proof system is based on Hilbert’s Nullstellensatz [Paul Beame et al., 1996]. Tropical ("min-plus") arithmetic has many applications in various areas of mathematics. The operations are the real addition (as the tropical multiplication) and the minimum (as the tropical addition). Recently, [Bertram and Easton, 2017; Dima Grigoriev and Vladimir V. Podolskii, 2018; Joo and Mincheva, 2018] demonstrated a version of Nullstellensatz in the tropical setting. In this paper we introduce (semi)algebraic proof systems that use min-plus arithmetic. For the dual-variable encoding of Boolean variables (two tropical variables x and x ̅ per one Boolean variable x) and {0,1}-encoding of the truth values, we prove that a static (Nullstellensatz-based) tropical proof system polynomially simulates daglike resolution and also has short proofs for the propositional pigeon-hole principle. Its dynamic version strengthened by an additional derivation rule (a tropical analogue of resolution by linear inequality) is equivalent to the system Res(LP) (aka R(LP)), which derives nonnegative linear combinations of linear inequalities; this latter system is known to polynomially simulate Krajíček’s Res(CP) (aka R(CP)) with unary coefficients. Therefore, tropical proof systems give a finer hierarchy of proof systems below Res(LP) for which we still do not have exponential lower bounds. While the "driving force" in Res(LP) is resolution by linear inequalities, dynamic tropical systems are driven solely by the transitivity of the order, and static tropical proof systems are based on reasoning about differences between the input linear functions. For the truth values encoded by {0,∞}, dynamic tropical proofs are equivalent to Res(∞), which is a small-depth Frege system called also DNF resolution. Finally, we provide a lower bound on the size of derivations of a much simplified tropical version of the {Binary Value Principle} in a static tropical proof system. Also, we establish the non-deducibility of the tropical resolution rule in this system and discuss axioms for Boolean logic that do not use dual variables. In this extended abstract, full proofs are omitted.

Cite as

Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch. Tropical Proof Systems: Between R(CP) and Resolution. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.STACS.2025.8,
  author =	{Alekseev, Yaroslav and Grigoriev, Dima and Hirsch, Edward A.},
  title =	{{Tropical Proof Systems: Between R(CP) and Resolution}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.8},
  URN =		{urn:nbn:de:0030-drops-228332},
  doi =		{10.4230/LIPIcs.STACS.2025.8},
  annote =	{Keywords: Cutting Planes, Nullstellensatz refutations, Res(CP), semi-algebraic proofs, tropical proof systems, tropical semiring}
}
Document
Lifting Dichotomies

Authors: Yaroslav Alekseev, Yuval Filmus, and Alexander Smal

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure A for some function f, we compose f with a carefully chosen gadget function g and get essentially the same lower bound on a complexity measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications in many different areas such as circuit complexity, communication complexity, proof complexity, etc. One of the main question in the context of lifting is how to choose a suitable gadget g. Generally, to get better results, i.e., to minimize the losses when transferring lower bounds, we need the gadget to be of a constant size (number of inputs). Unfortunately, in many settings we know lifting results only for gadgets of size that grows with the size of f, and it is unclear whether it can be improved to a constant size gadget. This motivates us to identify the properties of gadgets that make lifting possible. In this paper, we systematically study the question "For which gadgets does the lifting result hold?" in the following four settings: lifting from decision tree depth to decision tree size, lifting from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity decision tree depth and size, and lifting from block sensitivity to deterministic and randomized communication complexities. In all the cases, we prove the complete classification of gadgets by exposing the properties of gadgets that make lifting results hold. The structure of the results shows that there is no intermediate cases - for every gadget there is either a polynomial lifting or no lifting at all. As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that can be represented as f ⋄ OR ⋄ XOR for some function f. In this extended abstract, the proofs are omitted. Full proofs are given in the full version [Yaroslav Alekseev et al., 2024].

Cite as

Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. Lifting Dichotomies. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.CCC.2024.9,
  author =	{Alekseev, Yaroslav and Filmus, Yuval and Smal, Alexander},
  title =	{{Lifting Dichotomies}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.9},
  URN =		{urn:nbn:de:0030-drops-204051},
  doi =		{10.4230/LIPIcs.CCC.2024.9},
  annote =	{Keywords: decision trees, log-rank conjecture, lifting, parity decision trees}
}
Document
A Lower Bound for Polynomial Calculus with Extension Rule

Authors: Yaroslav Alekseev

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
A major proof complexity problem is to prove a superpolynomial lower bound on the length of Frege proofs of arbitrary depth. A more general question is to prove an Extended Frege lower bound. Surprisingly, proving such bounds turns out to be much easier in the algebraic setting. In this paper, we study a proof system that can simulate Extended Frege: an extension of the Polynomial Calculus proof system where we can take a square root and introduce new variables that are equivalent to arbitrary depth algebraic circuits. We prove that an instance of the subset-sum principle, the binary value principle 1 + x₁ + 2 x₂ + … + 2^{n-1} x_n = 0 (BVP_n), requires refutations of exponential bit size over ℚ in this system. Part and Tzameret [Fedor Part and Iddo Tzameret, 2020] proved an exponential lower bound on the size of Res-Lin (Resolution over linear equations [Ran Raz and Iddo Tzameret, 2008]) refutations of BVP_n. We show that our system p-simulates Res-Lin and thus we get an alternative exponential lower bound for the size of Res-Lin refutations of BVP_n.

Cite as

Yaroslav Alekseev. A Lower Bound for Polynomial Calculus with Extension Rule. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{alekseev:LIPIcs.CCC.2021.21,
  author =	{Alekseev, Yaroslav},
  title =	{{A Lower Bound for Polynomial Calculus with Extension Rule}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.21},
  URN =		{urn:nbn:de:0030-drops-142959},
  doi =		{10.4230/LIPIcs.CCC.2021.21},
  annote =	{Keywords: proof complexity, algebraic proofs, polynomial calculus}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail