Document

**Published in:** LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)

We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of randomized classical algorithms.
1) We prove that every (quantum or classical) one-local algorithm (where the value of a vertex only depends on its and its neighbors' state) achieves on D-regular graphs of girth > 5 a maximum cut of at most 1/2 + C/√D for C = 1/√2 ≈ 0.7071. This is the first such result showing that one-local algorithms achieve a value that is bounded away from the true optimum for random graphs, which is 1/2 + P_*/√D + o(1/√D) for P_* ≈ 0.7632 [Dembo et al., 2017].
2) We show that there is a classical k-local algorithm that achieves a value of 1/2 + C/√D - O(1/√k) for D-regular graphs of girth > 2k+1, where C = 2/π ≈ 0.6366. This is an algorithmic version of the existential bound of [Lyons, 2017] and is related to the algorithm of [Aizenman et al., 1987] (ALR) for the Sherrington-Kirkpatrick model. This bound is better than that achieved by the one-local and two-local versions of QAOA on high-girth graphs [M. B. Hastings, 2019; Marwaha, 2021].
3) Through computational experiments, we give evidence that the ALR algorithm achieves better performance than constant-locality QAOA for random D-regular graphs, as well as other natural instances, including graphs that do have short cycles.
While our theoretical bounds require the locality and girth assumptions, our experimental work suggests that it could be possible to extend them beyond these constraints. This points at the tantalizing possibility that O(1)-local quantum maximum-cut algorithms might be pointwise dominated by polynomial-time classical algorithms, in the sense that there is a classical algorithm outputting cuts of equal or better quality on every possible instance. This is in contrast to the evidence that polynomial-time algorithms cannot simulate the probability distributions induced by local quantum algorithms.

Boaz Barak and Kunal Marwaha. Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth Graphs. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.ITCS.2022.14, author = {Barak, Boaz and Marwaha, Kunal}, title = {{Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth Graphs}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {14:1--14:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.14}, URN = {urn:nbn:de:0030-drops-156105}, doi = {10.4230/LIPIcs.ITCS.2022.14}, annote = {Keywords: approximation algorithms, QAOA, maximum cut, local distributions} }

Document

**Published in:** LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)

The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating quantum circuits. Given a quantum circuit C with n inputs and outputs and purported simulator whose output is distributed according to a distribution p over {0,1}ⁿ, the linear XEB fidelity of the simulator is ℱ_C(p) = 2ⁿ 𝔼_{x ∼ p} q_C(x) -1, where q_C(x) is the probability that x is output from the distribution C |0ⁿ⟩. A trivial simulator (e.g., the uniform distribution) satisfies ℱ_C(p) = 0, while Google’s noisy quantum simulation of a 53-qubit circuit C achieved a fidelity value of (2.24 ±0.21)×10^{-3} (Arute et. al., Nature'19).
In this work we give a classical randomized algorithm that for a given circuit C of depth d with Haar random 2-qubit gates achieves in expectation a fidelity value of Ω(n/L⋅15^{-d}) in running time poly(n,2^L). Here L is the size of the light cone of C: the maximum number of input bits that each output bit depends on. In particular, we obtain a polynomial-time algorithm that achieves large fidelity of ω(1) for depth O(√{log n}) two-dimensional circuits. This is the first such result for two dimensional circuits of super-constant depth. Our results can be considered as an evidence that fooling the linear XEB test might be easier than achieving a full simulation of the quantum circuit.

Boaz Barak, Chi-Ning Chou, and Xun Gao. Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.ITCS.2021.30, author = {Barak, Boaz and Chou, Chi-Ning and Gao, Xun}, title = {{Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits}}, booktitle = {12th Innovations in Theoretical Computer Science Conference (ITCS 2021)}, pages = {30:1--30:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-177-1}, ISSN = {1868-8969}, year = {2021}, volume = {185}, editor = {Lee, James R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.30}, URN = {urn:nbn:de:0030-drops-135699}, doi = {10.4230/LIPIcs.ITCS.2021.30}, annote = {Keywords: Quantum supremacy, Linear cross-entropy benchmark} }

Document

Track B: Automata, Logic, Semantics, and Theory of Programming

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

Type-two constructions abound in cryptography: adversaries for encryption and authentication schemes, if active, are modeled as algorithms having access to oracles, i.e. as second-order algorithms. But how about making cryptographic schemes themselves higher-order? This paper gives an answer to this question, by first describing why higher-order cryptography is interesting as an object of study, then showing how the concept of probabilistic polynomial time algorithm can be generalized so as to encompass algorithms of order strictly higher than two, and finally proving some positive and negative results about the existence of higher-order cryptographic primitives, namely authentication schemes and pseudorandom functions.

Boaz Barak, Raphaëlle Crubillé, and Ugo Dal Lago. On Higher-Order Cryptography. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 108:1-108:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.ICALP.2020.108, author = {Barak, Boaz and Crubill\'{e}, Rapha\"{e}lle and Dal Lago, Ugo}, title = {{On Higher-Order Cryptography}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {108:1--108:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.108}, URN = {urn:nbn:de:0030-drops-125153}, doi = {10.4230/LIPIcs.ICALP.2020.108}, annote = {Keywords: Higher-order computation, probabilistic computation, game semantics, cryptography} }

Document

**Published in:** LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)

Dinur, Khot, Kindler, Minzer and Safra (2016) recently showed that the (imperfect completeness variant of) Khot's 2 to 2 games conjecture follows from a combinatorial hypothesis about the soundness of a certain "Grassmanian agreement tester". In this work, we show that soundness of Grassmannian agreement tester follows from a conjecture we call the "Shortcode Expansion Hypothesis" characterizing the non-expanding sets of the degree-two Short code graph. We also show the latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman graph, as hypothesized by a follow-up paper of Dinur et al. (2017).
Following our work, Khot, Minzer and Safra (2018) proved the "Shortcode Expansion Hypothesis". Combining their proof with our result and the reduction of Dinur et al. (2016), completes the proof of the 2 to 2 conjecture with imperfect completeness. We believe that the Shortcode graph provides a useful view of both the hypothesis and the reduction, and might be suitable for obtaining new hardness reductions.

Boaz Barak, Pravesh K. Kothari, and David Steurer. Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.ITCS.2019.9, author = {Barak, Boaz and Kothari, Pravesh K. and Steurer, David}, title = {{Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture}}, booktitle = {10th Innovations in Theoretical Computer Science Conference (ITCS 2019)}, pages = {9:1--9:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-095-8}, ISSN = {1868-8969}, year = {2019}, volume = {124}, editor = {Blum, Avrim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.9}, URN = {urn:nbn:de:0030-drops-101022}, doi = {10.4230/LIPIcs.ITCS.2019.9}, annote = {Keywords: Unique Games Conjecture, Small-Set Expansion, Grassmann Graph, Shortcode} }

Document

Invited Talk

**Published in:** LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)

In this high level and accessible talk I will describe a recent line of works aimed at trying to understand the intrinsic complexity of computational problems by finding optimal algorithms for large classes of such problems. In particular, I will talk about efforts centered on convex programming as a source for such candidate algorithms. As we will see, a byproduct of this effort is a computational analog of Bayesian probability that is of its own interest.
I will demonstrate the approach using the example of the planted clique (also known as hidden clique) problem - a central problem in average case complexity with connections to machine learning, community detection, compressed sensing, finding Nash equilibrium and more. While the complexity of the planted clique problem is still wide open, this line of works has led to interesting insights on it.

Boaz Barak. Convexity, Bayesianism, and the Quest Towards Optimal Algorithms (Invited Talk). In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, p. 7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{barak:LIPIcs.FSTTCS.2015.7, author = {Barak, Boaz}, title = {{Convexity, Bayesianism, and the Quest Towards Optimal Algorithms}}, booktitle = {35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)}, pages = {7--7}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-97-2}, ISSN = {1868-8969}, year = {2015}, volume = {45}, editor = {Harsha, Prahladh and Ramalingam, G.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.7}, URN = {urn:nbn:de:0030-drops-56626}, doi = {10.4230/LIPIcs.FSTTCS.2015.7}, annote = {Keywords: Convex programming, Bayesian probability, Average-case complexity, Planted clique} }

Document

**Published in:** LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)

We show that for any odd k and any instance I of the max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a 1/2 + Omega(1/sqrt(D)) fraction of I's constraints, where D is a bound on the number of constraints that each variable occurs in.
This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a quantum algorithm to find an assignment satisfying a 1/2 Omega(D^{-3/4}) fraction of the equations.
For arbitrary constraint satisfaction problems, we give a similar result for "triangle-free" instances; i.e., an efficient algorithm that finds an assignment satisfying at least a mu + Omega(1/sqrt(degree)) fraction of constraints, where mu is the fraction that would be satisfied by a uniformly random assignment.

Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John Wright. Beating the Random Assignment on Constraint Satisfaction Problems of Bounded Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 110-123, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.APPROX-RANDOM.2015.110, author = {Barak, Boaz and Moitra, Ankur and O’Donnell, Ryan and Raghavendra, Prasad and Regev, Oded and Steurer, David and Trevisan, Luca and Vijayaraghavan, Aravindan and Witmer, David and Wright, John}, title = {{Beating the Random Assignment on Constraint Satisfaction Problems of Bounded Degree}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)}, pages = {110--123}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-89-7}, ISSN = {1868-8969}, year = {2015}, volume = {40}, editor = {Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.110}, URN = {urn:nbn:de:0030-drops-52981}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2015.110}, annote = {Keywords: constraint satisfaction problems, bounded degree, advantage over random} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail