Search Results

Documents authored by Bille, Alexander


Document
A Graph-Theoretic Formulation of Exploratory Blockmodeling

Authors: Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem on undirected and unweighted one-mode networks. Our formulation takes as input the network G and the maximum number t of blocks for the solution model. The task is to find a minimum-size set of edge insertions and deletions that transform the input graph G into a graph G' with at most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the same neighborhood. The neighborhood classes of G' directly give the blocks and block interactions of the computed blockmodel. We analyze the classic and parameterized complexity of the exploratory blockmodeling problem, provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we compare our exact algorithms to previous ILP-based approaches and show that the new algorithms are faster for t ≥ 4.

Cite as

Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. A Graph-Theoretic Formulation of Exploratory Blockmodeling. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.SEA.2023.14,
  author =	{Bille, Alexander and Gr\"{u}ttemeier, Niels and Komusiewicz, Christian and Morawietz, Nils},
  title =	{{A Graph-Theoretic Formulation of Exploratory Blockmodeling}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.14},
  URN =		{urn:nbn:de:0030-drops-183648},
  doi =		{10.4230/LIPIcs.SEA.2023.14},
  annote =	{Keywords: Clustering, Exact Algorithms, ILP-Formulation, Branch-and-Bound, Social Networks}
}
Document
PACE Solver Description
PACE Solver Description: ADE-Solver

Authors: Alexander Bille, Dominik Brandenstein, and Emanuel Herrendorf

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
This document describes our exact solver "ADE" for the unweighted cluster editing problem submitted to the PACE 2021 competition. The solver’s core consists of an FPT-algorithm using a branch and bound strategy in conjunction with several data reduction rules.

Cite as

Alexander Bille, Dominik Brandenstein, and Emanuel Herrendorf. PACE Solver Description: ADE-Solver. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 28:1-28:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.IPEC.2021.28,
  author =	{Bille, Alexander and Brandenstein, Dominik and Herrendorf, Emanuel},
  title =	{{PACE Solver Description: ADE-Solver}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{28:1--28:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.28},
  URN =		{urn:nbn:de:0030-drops-154112},
  doi =		{10.4230/LIPIcs.IPEC.2021.28},
  annote =	{Keywords: Unweighted Cluster Editing}
}