Document

**Published in:** LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)

We show that the entire class of polar codes (up to a natural necessary condition) converge to capacity at block lengths polynomial in the gap to capacity, while simultaneously achieving failure probabilities that are exponentially small in the block length (i.e., decoding fails with probability exp(-N^{Omega(1)}) for codes of length N). Previously this combination was known only for one specific family within the class of polar codes, whereas we establish this whenever the polar code exhibits a condition necessary for any polarization.
Our results adapt and strengthen a local analysis of polar codes due to the authors with Nakkiran and Rudra [Proc. STOC 2018]. Their analysis related the time-local behavior of a martingale to its global convergence, and this allowed them to prove that the broad class of polar codes converge to capacity at polynomial block lengths. Their analysis easily adapts to show exponentially small failure probabilities, provided the associated martingale, the "Arikan martingale", exhibits a corresponding strong local effect. The main contribution of this work is a much stronger local analysis of the Arikan martingale. This leads to the general result claimed above.
In addition to our general result, we also show, for the first time, polar codes that achieve failure probability exp(-N^{beta}) for any beta < 1 while converging to capacity at block length polynomial in the gap to capacity. Finally we also show that the "local" approach can be combined with any analysis of failure probability of an arbitrary polar code to get essentially the same failure probability while achieving block length polynomial in the gap to capacity.

Jaroslaw Blasiok, Venkatesan Guruswami, and Madhu Sudan. Polar Codes with Exponentially Small Error at Finite Block Length. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.APPROX-RANDOM.2018.34, author = {Blasiok, Jaroslaw and Guruswami, Venkatesan and Sudan, Madhu}, title = {{Polar Codes with Exponentially Small Error at Finite Block Length}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)}, pages = {34:1--34:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-085-9}, ISSN = {1868-8969}, year = {2018}, volume = {116}, editor = {Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.34}, URN = {urn:nbn:de:0030-drops-94382}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2018.34}, annote = {Keywords: Polar codes, error exponent, rate of polarization} }

Document

**Published in:** LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)

In insertion-only streaming, one sees a sequence of indices a_1, a_2, ..., a_m in [n]. The stream defines a sequence of m frequency vectors x(1), ..., x(m) each in R^n, where x(t) is the frequency vector of items after seeing the first t indices in the stream. Much work in the streaming literature focuses on estimating some function f(x(m)). Many applications though require obtaining estimates at time t of f(x(t)), for every t in [m]. Naively this guarantee is obtained by devising an algorithm with failure probability less than 1/m, then performing a union bound over all stream updates to guarantee that all m estimates are simultaneously accurate with good probability. When f(x) is some l_p norm of x, recent works have shown that this union bound is wasteful and better space complexity is possible for the continuous monitoring problem, with the strongest known results being for p=2. In this work, we improve the state of the art for all 0<p<2, which we obtain via a novel analysis of Indyk's p-stable sketch.

Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. Continuous Monitoring of l_p Norms in Data Streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 32:1-32:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.APPROX-RANDOM.2017.32, author = {Blasiok, Jaroslaw and Ding, Jian and Nelson, Jelani}, title = {{Continuous Monitoring of l\underlinep Norms in Data Streams}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)}, pages = {32:1--32:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-044-6}, ISSN = {1868-8969}, year = {2017}, volume = {81}, editor = {Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.32}, URN = {urn:nbn:de:0030-drops-75816}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2017.32}, annote = {Keywords: data streams, continuous monitoring, moment estimation} }

Document

**Published in:** LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)

In dictionary learning we observe Y = AX + E for some Y in R^{n*p}, A in R^{m*n}, and X in R^{m*p}, where p >= max{n, m}, and typically m >=n. The matrix Y is observed, and A, X, E are unknown. Here E is a "noise" matrix of small norm, and X is column-wise sparse. The matrix A is referred to as a dictionary, and its columns as atoms. Then, given some small number p of samples, i.e. columns of Y , the goal is to learn the dictionary A up to small error, as well as the coefficient matrix X. In applications one could for example think of each column of Y as a distinct image in a database. The motivation is that in many applications data is expected to sparse when represented by atoms in the "right" dictionary A (e.g. images in the Haar wavelet basis), and the goal is to learn A from the data to then use it for other applications.
Recently, the work of [Spielman/Wang/Wright, COLT'12] proposed the dictionary learning algorithm ER-SpUD with provable guarantees when E = 0 and m = n. That work showed that if X has independent entries with an expected Theta n non-zeroes per column for 1/n <~ Theta <~ 1/sqrt(n), and with non-zero entries being subgaussian, then for p >~ n^2 log^2 n with high probability ER-SpUD outputs matrices A', X' which equal A, X up to permuting and scaling columns (resp. rows) of A (resp. X). They conjectured that p >~ n log n suffices, which they showed was information theoretically necessary for any algorithm to succeed when Theta =~ 1/n. Significant progress toward showing that p >~ n log^4 n might suffice was later obtained in [Luh/Vu, FOCS'15].
In this work, we show that for a slight variant of ER-SpUD, p >~ n log(n/delta) samples suffice for successful recovery with probability 1 - delta. We also show that without our slight variation made to ER-SpUD, p >~ n^{1.99} samples are required even to learn A, X with a small success probability of 1/ poly(n). This resolves the main conjecture of [Spielman/Wang/Wright, COLT'12], and contradicts a result of [Luh/Vu, FOCS'15], which claimed that p >~ n log^4 n guarantees high probability of success for the original ER-SpUD algorithm.

Jaroslaw Blasiok and Jelani Nelson. An Improved Analysis of the ER-SpUD Dictionary Learning Algorithm. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 44:1-44:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.ICALP.2016.44, author = {Blasiok, Jaroslaw and Nelson, Jelani}, title = {{An Improved Analysis of the ER-SpUD Dictionary Learning Algorithm}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {44:1--44:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.44}, URN = {urn:nbn:de:0030-drops-63246}, doi = {10.4230/LIPIcs.ICALP.2016.44}, annote = {Keywords: dictionary learning, stochastic processes, generic chaining} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail