Document

**Published in:** LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)

We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider several variants of the problem as we focus on both the token sliding and token jumping models. Our first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length sequence of slides transforming A into B. We additionally establish that the existence of a sequence of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly, we show that deciding if a sequence of at most 𝓁 jumps can transform A into B is an NP-complete problem. To complement this negative result, we investigate the parameterized complexity of what we believe to be the two most natural parameterized counterparts of the latter problem; in particular, we study the problem of computing a minimum-length sequence of jumps when parameterized by the size k of the minimum s-t-separators and when parameterized by the number 𝓁 of jumps. For the first parameterization, we show that the problem is fixed-parameter tractable, but does not admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel with 𝒪(𝓁²) vertices and edges for the length 𝓁 of the sequence as a parameter.

Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden. Minimum Separator Reconfiguration. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{c.m.gomes_et_al:LIPIcs.IPEC.2023.9, author = {C. M. Gomes, Guilherme and Legrand-Duchesne, Cl\'{e}ment and Mahmoud, Reem and Mouawad, Amer E. and Okamoto, Yoshio and F. dos Santos, Vinicius and C. van der Zanden, Tom}, title = {{Minimum Separator Reconfiguration}}, booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)}, pages = {9:1--9:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-305-8}, ISSN = {1868-8969}, year = {2023}, volume = {285}, editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.9}, URN = {urn:nbn:de:0030-drops-194288}, doi = {10.4230/LIPIcs.IPEC.2023.9}, annote = {Keywords: minimum separators, combinatorial reconfiguration, parameterized complexity, kernelization} }

Document

**Published in:** LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)

A matching cut is a partition of the vertex set of a graph into two sets A and B such that each vertex has at most one neighbor in the other side of the cut. The Matching Cut problem asks whether a graph has a matching cut, and has been intensively studied in the literature. Motivated by a question posed by Komusiewicz et al. [IPEC 2018], we introduce a natural generalization of this problem, which we call d-Cut: for a positive integer d, a d-cut is a bipartition of the vertex set of a graph into two sets A and B such that each vertex has at most d neighbors across the cut. We generalize (and in some cases, improve) a number of results for the Matching Cut problem. Namely, we begin with an NP-hardness reduction for d-Cut on (2d+2)-regular graphs and a polynomial algorithm for graphs of maximum degree at most d+2. The degree bound in the hardness result is unlikely to be improved, as it would disprove a long-standing conjecture in the context of internal partitions. We then give FPT algorithms for several parameters: the maximum number of edges crossing the cut, treewidth, distance to cluster, and distance to co-cluster. In particular, the treewidth algorithm improves upon the running time of the best known algorithm for Matching Cut. Our main technical contribution, building on the techniques of Komusiewicz et al. [IPEC 2018], is a polynomial kernel for d-Cut for every positive integer d, parameterized by the distance to a cluster graph. We also rule out the existence of polynomial kernels when parameterizing simultaneously by the number of edges crossing the cut, the treewidth, and the maximum degree. Finally, we provide an exact exponential algorithm slightly faster than the naive brute force approach running in time O^*(2^n).

Guilherme C. M. Gomes and Ignasi Sau. Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and Kernelization. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 19:1-19:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{c.m.gomes_et_al:LIPIcs.IPEC.2019.19, author = {C. M. Gomes, Guilherme and Sau, Ignasi}, title = {{Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and Kernelization}}, booktitle = {14th International Symposium on Parameterized and Exact Computation (IPEC 2019)}, pages = {19:1--19:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-129-0}, ISSN = {1868-8969}, year = {2019}, volume = {148}, editor = {Jansen, Bart M. P. and Telle, Jan Arne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.19}, URN = {urn:nbn:de:0030-drops-114809}, doi = {10.4230/LIPIcs.IPEC.2019.19}, annote = {Keywords: matching cut, bounded degree cut, parameterized complexity, FPT algorithm, polynomial kernel, distance to cluster} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail