Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{chakraborty_et_al:LIPIcs.ICALP.2019.33, author = {Chakraborty, Shantanav and Gily\'{e}n, Andr\'{a}s and Jeffery, Stacey}, title = {{The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {33:1--33:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33}, URN = {urn:nbn:de:0030-drops-106092}, doi = {10.4230/LIPIcs.ICALP.2019.33}, annote = {Keywords: Quantum algorithms, Hamiltonian simulation, Quantum machine learning} }
Feedback for Dagstuhl Publishing