Search Results

Documents authored by Chouquet, Jules


Document
Taylor expansion for Call-By-Push-Value

Authors: Jules Chouquet and Christine Tasson

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value.

Cite as

Jules Chouquet and Christine Tasson. Taylor expansion for Call-By-Push-Value. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chouquet_et_al:LIPIcs.CSL.2020.16,
  author =	{Chouquet, Jules and Tasson, Christine},
  title =	{{Taylor expansion for Call-By-Push-Value}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.16},
  URN =		{urn:nbn:de:0030-drops-116594},
  doi =		{10.4230/LIPIcs.CSL.2020.16},
  annote =	{Keywords: Call-By-Push-Value, Quantitative semantics, Taylor expansion, Linear Logic}
}
Document
An Application of Parallel Cut Elimination in Unit-Free Multiplicative Linear Logic to the Taylor Expansion of Proof Nets

Authors: Jules Chouquet and Lionel Vaux Auclair

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose some constraint on switching paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfy our constraints. In the present work, we stick to the unit-free and weakening-free fragment of linear logic, which is rich enough to showcase our techniques, while allowing for a very simple kind of constraint: a bound on the number of cuts that are crossed by any switching path.

Cite as

Jules Chouquet and Lionel Vaux Auclair. An Application of Parallel Cut Elimination in Unit-Free Multiplicative Linear Logic to the Taylor Expansion of Proof Nets. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chouquet_et_al:LIPIcs.CSL.2018.15,
  author =	{Chouquet, Jules and Vaux Auclair, Lionel},
  title =	{{An Application of Parallel Cut Elimination in Unit-Free Multiplicative Linear Logic to the Taylor Expansion of Proof Nets}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.15},
  URN =		{urn:nbn:de:0030-drops-96828},
  doi =		{10.4230/LIPIcs.CSL.2018.15},
  annote =	{Keywords: linear logic, proof nets, cut elimination, differential linear logic}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail