Search Results

Documents authored by Eberl, Manuel


Document
Short Paper
Formalising Half of a Graduate Textbook on Number Theory (Short Paper)

Authors: Manuel Eberl, Anthony Bordg, Lawrence C. Paulson, and Wenda Li

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Apostol’s Modular Functions and Dirichlet Series in Number Theory [Tom M. Apostol, 1990] is a graduate text covering topics such as elliptic functions, modular functions, approximation theorems and general Dirichlet series. It relies on complex analysis, winding numbers, the Riemann ζ function and Laurent series. We have formalised several chapters and can comment on the sort of gaps found in pedagogical mathematics. Proofs are available from https://github.com/Wenda302/Number_Theory_ITP2024.

Cite as

Manuel Eberl, Anthony Bordg, Lawrence C. Paulson, and Wenda Li. Formalising Half of a Graduate Textbook on Number Theory (Short Paper). In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 40:1-40:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eberl_et_al:LIPIcs.ITP.2024.40,
  author =	{Eberl, Manuel and Bordg, Anthony and Paulson, Lawrence C. and Li, Wenda},
  title =	{{Formalising Half of a Graduate Textbook on Number Theory}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{40:1--40:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.40},
  URN =		{urn:nbn:de:0030-drops-207686},
  doi =		{10.4230/LIPIcs.ITP.2024.40},
  annote =	{Keywords: Isabelle/HOL, number theory, complex analysis, formalisation of mathematics}
}
Document
Nine Chapters of Analytic Number Theory in Isabelle/HOL

Authors: Manuel Eberl

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
In this paper, I present a formalisation of a large portion of Apostol’s Introduction to Analytic Number Theory in Isabelle/HOL. Of the 14 chapters in the book, the content of 9 has been mostly formalised, while the content of 3 others was already mostly available in Isabelle before. The most interesting results that were formalised are: - The Riemann and Hurwitz zeta functions and the Dirichlet L functions - Dirichlet’s theorem on primes in arithmetic progressions - An analytic proof of the Prime Number Theorem - The asymptotics of arithmetical functions such as the prime omega function, the divisor count sigma_0(n), and Euler’s totient function phi(n)

Cite as

Manuel Eberl. Nine Chapters of Analytic Number Theory in Isabelle/HOL. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 16:1-16:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{eberl:LIPIcs.ITP.2019.16,
  author =	{Eberl, Manuel},
  title =	{{Nine Chapters of Analytic Number Theory in Isabelle/HOL}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{16:1--16:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.16},
  URN =		{urn:nbn:de:0030-drops-110714},
  doi =		{10.4230/LIPIcs.ITP.2019.16},
  annote =	{Keywords: Isabelle, theorem proving, analytic number theory, number theory, arithmetical function, Dirichlet series, prime number theorem, Dirichlet’s theorem, zeta function, L functions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail