Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)
Alexandros Eskenazis. Dimensionality of Hamming Metrics and Rademacher Type. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 55:1-55:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{eskenazis:LIPIcs.SoCG.2024.55, author = {Eskenazis, Alexandros}, title = {{Dimensionality of Hamming Metrics and Rademacher Type}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {55:1--55:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.55}, URN = {urn:nbn:de:0030-drops-200004}, doi = {10.4230/LIPIcs.SoCG.2024.55}, annote = {Keywords: Hamming cube, Rademacher type, metric embeddings, Borsuk-Ulam theorem} }
Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Alexandros Eskenazis. ε-Isometric Dimension Reduction for Incompressible Subsets of 𝓁_p. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 40:1-40:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{eskenazis:LIPIcs.SoCG.2022.40, author = {Eskenazis, Alexandros}, title = {{\epsilon-Isometric Dimension Reduction for Incompressible Subsets of 𝓁\underlinep}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {40:1--40:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.40}, URN = {urn:nbn:de:0030-drops-160486}, doi = {10.4230/LIPIcs.SoCG.2022.40}, annote = {Keywords: Dimension reduction, \epsilon-isometric embedding, Maurey’s empirical method, change of measure} }
Feedback for Dagstuhl Publishing