Search Results

Documents authored by Fuchs, Michael


Document
Galled Tree-Child Networks

Authors: Yu-Sheng Chang, Michael Fuchs, and Guan-Ru Yu

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We propose the class of galled tree-child networks which is obtained as intersection of the classes of galled networks and tree-child networks. For the latter two classes, (asymptotic) counting results and stochastic results have been proved with very different methods. We show that a counting result for the class of galled tree-child networks follows with similar tools as used for galled networks, however, the result has a similar pattern as the one for tree-child networks. In addition, we also consider the (suitably scaled) numbers of reticulation nodes of random galled tree-child networks and show that they are asymptotically normal distributed. This is in contrast to the limit laws of the corresponding quantities for galled networks and tree-child networks which have been both shown to be discrete.

Cite as

Yu-Sheng Chang, Michael Fuchs, and Guan-Ru Yu. Galled Tree-Child Networks. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.AofA.2024.8,
  author =	{Chang, Yu-Sheng and Fuchs, Michael and Yu, Guan-Ru},
  title =	{{Galled Tree-Child Networks}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.8},
  URN =		{urn:nbn:de:0030-drops-204439},
  doi =		{10.4230/LIPIcs.AofA.2024.8},
  annote =	{Keywords: Phylogenetic Network, galled Network, tree-child Network, asymptotic Enumeration, Limit Law, Lagrange Inversion}
}
Document
Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed Number of Galls

Authors: Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
Galled trees appear in problems concerning admixture, horizontal gene transfer, hybridization, and recombination. Building on a recursive enumerative construction, we study the asymptotic behavior of the number of rooted binary unlabeled (normal) galled trees as the number of leaves n increases, maintaining a fixed number of galls g. We find that the exponential growth with n of the number of rooted binary unlabeled normal galled trees with g galls has the same value irrespective of the value of g ≥ 0. The subexponential growth, however, depends on g; it follows c_g n^{2g-3/2}, where c_g is a constant dependent on g. Although for each g, the exponential growth is approximately 2.4833ⁿ, summing across all g, the exponential growth is instead approximated by the much larger 4.8230ⁿ.

Cite as

Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg. Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed Number of Galls. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agranattamir_et_al:LIPIcs.AofA.2024.27,
  author =	{Agranat-Tamir, Lily and Fuchs, Michael and Gittenberger, Bernhard and Rosenberg, Noah A.},
  title =	{{Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed Number of Galls}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.27},
  URN =		{urn:nbn:de:0030-drops-204626},
  doi =		{10.4230/LIPIcs.AofA.2024.27},
  annote =	{Keywords: galled trees, generating functions, phylogenetics, unlabeled trees}
}
Document
Enumeration of d-Combining Tree-Child Networks

Authors: Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, and Guan-Ru Yu

Published in: LIPIcs, Volume 225, 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)


Abstract
Tree-child networks are one of the most prominent network classes for modeling evolutionary processes which contain reticulation events. Several recent studies have addressed counting questions for bicombining tree-child networks which are tree-child networks with every reticulation node having exactly two parents. In this paper, we extend these studies to d-combining tree-child networks where every reticulation node has now d ≥ 2 parents. Moreover, we also give results and conjectures on the distributional behavior of the number of reticulation nodes of a network which is drawn uniformly at random from the set of all tree-child networks with the same number of leaves.

Cite as

Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, and Guan-Ru Yu. Enumeration of d-Combining Tree-Child Networks. In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 225, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.AofA.2022.5,
  author =	{Chang, Yu-Sheng and Fuchs, Michael and Liu, Hexuan and Wallner, Michael and Yu, Guan-Ru},
  title =	{{Enumeration of d-Combining Tree-Child Networks}},
  booktitle =	{33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-230-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{225},
  editor =	{Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.5},
  URN =		{urn:nbn:de:0030-drops-160914},
  doi =		{10.4230/LIPIcs.AofA.2022.5},
  annote =	{Keywords: Phylogenetic network, tree-child network, d-combining tree-child network, exact enumeration, asymptotic enumeration, reticulation node, limit law, stretched exponential}
}
Document
Refined Asymptotics for the Number of Leaves of Random Point Quadtrees

Authors: Michael Fuchs, Noela S. Müller, and Henning Sulzbach

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
In the early 2000s, several phase change results from distributional convergence to distributional non-convergence have been obtained for shape parameters of random discrete structures. Recently, for those random structures which admit a natural martingale process, these results have been considerably improved by obtaining refined asymptotics for the limit behavior. In this work, we propose a new approach which is also applicable to random discrete structures which do not admit a natural martingale process. As an example, we obtain refined asymptotics for the number of leaves in random point quadtrees. More applications, for example to shape parameters in generalized m-ary search trees and random gridtrees, will be discussed in the journal version of this extended abstract.

Cite as

Michael Fuchs, Noela S. Müller, and Henning Sulzbach. Refined Asymptotics for the Number of Leaves of Random Point Quadtrees. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fuchs_et_al:LIPIcs.AofA.2018.23,
  author =	{Fuchs, Michael and M\"{u}ller, Noela S. and Sulzbach, Henning},
  title =	{{Refined Asymptotics for the Number of Leaves of Random Point Quadtrees}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.23},
  URN =		{urn:nbn:de:0030-drops-89165},
  doi =		{10.4230/LIPIcs.AofA.2018.23},
  annote =	{Keywords: Quadtree, number of leaves, phase change, stochastic fixed-point equation, central limit theorem, positivity of variance, contraction method}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail