Document

**Published in:** LIPIcs, Volume 242, 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)

The decomposition of flow-networks is an essential part of many transcriptome assembly algorithms used in Computational Biology. The addition of subpath constraints to this decomposition appeared recently as an effective way to incorporate longer, already known, portions of the transcript. The problem is defined as follows: given a weakly connected directed acyclic flow network G = (V, E, f) and a set ℛ of subpaths in G, find a flow decomposition so that every subpath in ℛ is included in some flow in the decomposition [Williams et al., WABI 2021]. The authors of that work presented an exponential time algorithm for determining the feasibility of such a flow decomposition, and more recently presented an O(|E| + L+|ℛ|³) time algorithm, where L is the sum of the path lengths in ℛ [Williams et al., TCBB 2022]. Our work provides an improved, linear O(|E| + L) time algorithm for determining the feasibility of such a flow decomposition. We also introduce two natural optimization variants of the feasibility problem: (i) determining the minimum sized subset of ℛ that must be removed to make a flow decomposition feasible, and (ii) determining the maximum sized subset of ℛ that can be maintained while making a flow decomposition feasible. We show that, under the assumption P ≠ NP, (i) does not admit a polynomial-time o(log |V|)-approximation algorithm and (ii) does not admit a polynomial-time O(|V|^{1/2-ε} + |ℛ|^{1-ε})-approximation algorithm for any constant ε > 0.

Daniel Gibney, Sharma V. Thankachan, and Srinivas Aluru. Feasibility of Flow Decomposition with Subpath Constraints in Linear Time. In 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 242, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{gibney_et_al:LIPIcs.WABI.2022.17, author = {Gibney, Daniel and Thankachan, Sharma V. and Aluru, Srinivas}, title = {{Feasibility of Flow Decomposition with Subpath Constraints in Linear Time}}, booktitle = {22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)}, pages = {17:1--17:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-243-3}, ISSN = {1868-8969}, year = {2022}, volume = {242}, editor = {Boucher, Christina and Rahmann, Sven}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2022.17}, URN = {urn:nbn:de:0030-drops-170516}, doi = {10.4230/LIPIcs.WABI.2022.17}, annote = {Keywords: Flow networks, flow decomposition, subpath constraints} }

Document

**Published in:** LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)

This work establishes several strong hardness results on the problem of finding an ordering on a string’s alphabet that either minimizes or maximizes the number of factors in that string’s Lyndon factorization. In doing so, we demonstrate that these ordering problems are sufficiently complex to model a wide variety of ordering constraint satisfaction problems (OCSPs). Based on this, we prove that (i) the decision versions of both the minimization and maximization problems are NP-complete, (ii) for both the minimization and maximization problems there does not exist a constant approximation algorithm running in polynomial time under the Unique Game Conjecture and (iii) there does not exist an algorithm to solve the minimization problem in time poly(|T|) ⋅ 2^o(σlog σ) for a string T over an alphabet of size σ under the Exponential Time Hypothesis (essentially the brute force approach of trying every alphabet order is hard to improve significantly).

Daniel Gibney and Sharma V. Thankachan. Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{gibney_et_al:LIPIcs.STACS.2021.35, author = {Gibney, Daniel and Thankachan, Sharma V.}, title = {{Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {35:1--35:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.35}, URN = {urn:nbn:de:0030-drops-136809}, doi = {10.4230/LIPIcs.STACS.2021.35}, annote = {Keywords: Lyndon Factorization, String Algorithms, Burrows-Wheeler Transform} }

Document

**Published in:** LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

The Burrows-Wheeler Transform (BWT) has been an essential tool in text compression and indexing. First introduced in 1994, it went on to provide the backbone for the first encoding of the classic suffix tree data structure in space close to entropy-based lower bound. Within the last decade, it has seen its role further enhanced with the development of compact suffix trees in space proportional to "r", the number of runs in the BWT. While r would superficially appear to be only a measure of space complexity, it is actually appearing increasingly often in the time complexity of new algorithms as well. This makes having the smallest value of r of growing importance. Interestingly, unlike other popular measures of compression, the parameter r is sensitive to the lexicographic ordering given to the text’s alphabet. Despite several past attempts to exploit this fact, a provably efficient algorithm for finding, or approximating, an alphabet ordering which minimizes r has been open for years.
We help to explain this lack of progress by presenting the first set of results on the computational complexity of minimizing BWT-runs via alphabet reordering. We prove that the decision version of this problem is NP-complete and cannot be solved in time poly(n)⋅ 2^o(σ) unless the Exponential Time Hypothesis fails, where σ is the size of the alphabet and n is the length of the text. Moreover, we show that the optimization variant is APX-hard. In doing so, we relate two previously disparate topics: the optimal traveling salesperson path of a graph and the number of runs in the BWT of a text. In addition, by relating recent results in the field of dictionary compression, we illustrate that an arbitrary alphabet ordering provides an O(log² n)-approximation. Lastly, we provide an optimal linear-time algorithm for a more restricted problem of finding an optimal ordering on a subset of symbols (occurring only once) under ordering constraints.

Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. On the Complexity of BWT-Runs Minimization via Alphabet Reordering. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 15:1-15:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{bentley_et_al:LIPIcs.ESA.2020.15, author = {Bentley, Jason W. and Gibney, Daniel and Thankachan, Sharma V.}, title = {{On the Complexity of BWT-Runs Minimization via Alphabet Reordering}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {15:1--15:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.15}, URN = {urn:nbn:de:0030-drops-128819}, doi = {10.4230/LIPIcs.ESA.2020.15}, annote = {Keywords: BWT, NP-hardness, APX-hardness} }

Document

**Published in:** LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

We present the first fine-grained complexity results on two classic problems on strings. The first one is the k-Median-Edit-Distance problem, where the input is a collection of k strings, each of length at most n, and the task is to find a new string that minimizes the sum of the edit distances from itself to all other strings in the input. Arising frequently in computational biology, this problem provides an important generalization of edit distance to multiple strings and is similar to the multiple sequence alignment problem in bioinformatics. We demonstrate that for any ε > 0 and k ≥ 2, an O(n^{k-ε}) time solution for the k-Median-Edit-Distance problem over an alphabet of size O(k) refutes the Strong Exponential Time Hypothesis (SETH). This provides the first matching conditional lower bound for the O(n^k) time algorithm established in 1975 by Sankoff.
The second problem we study is the k-Center-Edit-Distance problem. Here also, the input is a collection of k strings, each of length at most n. The task is to find a new string that minimizes the maximum edit distance from itself to any other string in the input. We prove that the same conditional lower bound as before holds. Our results also imply new conditional lower bounds for the k-Tree-Alignment and the k-Bottleneck-Tree-Alignment problems studied in phylogenetics.

Gary Hoppenworth, Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. The Fine-Grained Complexity of Median and Center String Problems Under Edit Distance. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 61:1-61:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{hoppenworth_et_al:LIPIcs.ESA.2020.61, author = {Hoppenworth, Gary and Bentley, Jason W. and Gibney, Daniel and Thankachan, Sharma V.}, title = {{The Fine-Grained Complexity of Median and Center String Problems Under Edit Distance}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {61:1--61:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.61}, URN = {urn:nbn:de:0030-drops-129278}, doi = {10.4230/LIPIcs.ESA.2020.61}, annote = {Keywords: Edit Distance, Median String, Center String, SETH} }

Document

**Published in:** LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)

Given a text T[1,n] over an alphabet Σ of size σ, the suffix array of T stores the lexicographic order of the suffixes of T. The suffix array needs Θ(nlog n) bits of space compared to the n log σ bits needed to store T itself. A major breakthrough [FM - Index, FOCS'00] in the last two decades has been encoding the suffix array in near-optimal number of bits (≈ log σ bits per character). One can decode a suffix array value using the FM-Index in log^{O(1)} n time.
We study an extension of the problem in which we have to also decode the suffix array values of the reverse text. This problem has numerous applications such as in approximate pattern matching [Lam et al., BIBM' 09]. Known approaches maintain the FM - Index of both the forward and the reverse text which drives up the space occupancy to 2nlog σ bits (plus lower order terms). This brings in the natural question of whether we can decode the suffix array values of both the forward and the reverse text, but by using nlog σ bits (plus lower order terms). We answer this question positively, and show that given the FM - Index of the forward text, we can decode the suffix array value of the reverse text in near logarithmic average time. Additionally, our experimental results are competitive when compared to the standard approach of maintaining the FM - Index for both the forward and the reverse text. We believe that applications that require both the forward and reverse text will benefit from our approach.

Arnab Ganguly, Daniel Gibney, Sahar Hooshmand, M. Oğuzhan Külekci, and Sharma V. Thankachan. FM-Index Reveals the Reverse Suffix Array. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{ganguly_et_al:LIPIcs.CPM.2020.13, author = {Ganguly, Arnab and Gibney, Daniel and Hooshmand, Sahar and K\"{u}lekci, M. O\u{g}uzhan and Thankachan, Sharma V.}, title = {{FM-Index Reveals the Reverse Suffix Array}}, booktitle = {31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)}, pages = {13:1--13:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-149-8}, ISSN = {1868-8969}, year = {2020}, volume = {161}, editor = {G{\o}rtz, Inge Li and Weimann, Oren}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.13}, URN = {urn:nbn:de:0030-drops-121388}, doi = {10.4230/LIPIcs.CPM.2020.13}, annote = {Keywords: Data Structures, Suffix Trees, String Algorithms, Compression, Burrows - Wheeler transform, FM-Index} }

Document

**Published in:** LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)

In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs, and that Wheeler graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present:
- The problem of recognizing whether a given graph G=(V,E) is a Wheeler graph is NP-complete for any edge label alphabet of size sigma >= 2, even when G is a DAG. This holds even on a restricted, subset of graphs called d-NFA’s for d >= 5. This is in contrast to recent results demonstrating the problem can be solved in polynomial time for d-NFA’s where d <= 2. We also show the recognition problem can be solved in linear time for sigma =1;
- There exists an 2^{e log sigma + O(n + e)} time exact algorithm where n = |V| and e = |E|. This algorithm relies on graph isomorphism being computable in strictly sub-exponential time;
- We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant C >= 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all C >= 1, it is NP-hard to find a C-approximation;
- We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for sigma=O(1);
The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial time solvable, raising the open question of which parameters determine this problem’s difficulty.

Daniel Gibney and Sharma V. Thankachan. On the Hardness and Inapproximability of Recognizing Wheeler Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 51:1-51:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{gibney_et_al:LIPIcs.ESA.2019.51, author = {Gibney, Daniel and Thankachan, Sharma V.}, title = {{On the Hardness and Inapproximability of Recognizing Wheeler Graphs}}, booktitle = {27th Annual European Symposium on Algorithms (ESA 2019)}, pages = {51:1--51:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-124-5}, ISSN = {1868-8969}, year = {2019}, volume = {144}, editor = {Bender, Michael A. and Svensson, Ola and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.51}, URN = {urn:nbn:de:0030-drops-111728}, doi = {10.4230/LIPIcs.ESA.2019.51}, annote = {Keywords: Burrows–Wheeler transform, string algorithms, suffix trees, NP-completeness} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail