Document

**Published in:** LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)

A distribution is k-incompressible, Yao [FOCS '82], if no efficient compression scheme compresses it to less than k bits. While being a natural measure, its relation to other computational analogs of entropy such as pseudoentropy, Hastad, Impagliazzo, Levin, and Luby [SICOMP '99], and to other cryptographic hardness assumptions, was unclear.
We advance towards a better understating of this notion, showing that a k-incompressible distribution has (k-2) bits of next-block pseudoentropy, a refinement of pseudoentropy introduced by Haitner, Reingold, and Vadhan [SICOMP '13]. We deduce that a samplable distribution X that is (H(X)+2)-incompressible, implies the existence of one-way functions.

Iftach Haitner, Noam Mazor, and Jad Silbak. Incompressiblity and Next-Block Pseudoentropy. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 66:1-66:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{haitner_et_al:LIPIcs.ITCS.2023.66, author = {Haitner, Iftach and Mazor, Noam and Silbak, Jad}, title = {{Incompressiblity and Next-Block Pseudoentropy}}, booktitle = {14th Innovations in Theoretical Computer Science Conference (ITCS 2023)}, pages = {66:1--66:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-263-1}, ISSN = {1868-8969}, year = {2023}, volume = {251}, editor = {Tauman Kalai, Yael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.66}, URN = {urn:nbn:de:0030-drops-175697}, doi = {10.4230/LIPIcs.ITCS.2023.66}, annote = {Keywords: incompressibility, next-block pseudoentropy, sparse languages} }

Document

**Published in:** LIPIcs, Volume 146, 33rd International Symposium on Distributed Computing (DISC 2019)

We prove lower bounds on the round complexity of randomized Byzantine agreement (BA) protocols, bounding the halting probability of such protocols after one and two rounds. In particular, we prove that:
1) BA protocols resilient against n/3 [resp., n/4] corruptions terminate (under attack) at the end of the first round with probability at most o(1) [resp., 1/2+ o(1)].
2) BA protocols resilient against n/4 corruptions terminate at the end of the second round with probability at most 1-Theta(1).
3) For a large class of protocols (including all BA protocols used in practice) and under a plausible combinatorial conjecture, BA protocols resilient against n/3 [resp., n/4] corruptions terminate at the end of the second round with probability at most o(1) [resp., 1/2 + o(1)].
The above bounds hold even when the parties use a trusted setup phase, e.g., a public-key infrastructure (PKI).
The third bound essentially matches the recent protocol of Micali (ITCS'17) that tolerates up to n/3 corruptions and terminates at the end of the third round with constant probability.

Ran Cohen, Iftach Haitner, Nikolaos Makriyannis, Matan Orland, and Alex Samorodnitsky. On the Round Complexity of Randomized Byzantine Agreement. In 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 146, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.DISC.2019.12, author = {Cohen, Ran and Haitner, Iftach and Makriyannis, Nikolaos and Orland, Matan and Samorodnitsky, Alex}, title = {{On the Round Complexity of Randomized Byzantine Agreement}}, booktitle = {33rd International Symposium on Distributed Computing (DISC 2019)}, pages = {12:1--12:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-126-9}, ISSN = {1868-8969}, year = {2019}, volume = {146}, editor = {Suomela, Jukka}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.12}, URN = {urn:nbn:de:0030-drops-113199}, doi = {10.4230/LIPIcs.DISC.2019.12}, annote = {Keywords: Byzantine agreement, lower bound, round complexity} }

Document

**Published in:** LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)

Key-agreement protocols whose security is proven in the random oracle model are an important alternative to protocols based on public-key cryptography. In the random oracle model, the parties and the eavesdropper have access to a shared random function (an "oracle"), but the parties are limited in the number of queries they can make to the oracle. The random oracle serves as an abstraction for black-box access to a symmetric cryptographic primitive, such as a collision resistant hash. Unfortunately, as shown by Impagliazzo and Rudich [STOC '89] and Barak and Mahmoody [Crypto '09], such protocols can only guarantee limited secrecy: the key of any l-query protocol can be revealed by an O(l^2)-query adversary. This quadratic gap between the query complexity of the honest parties and the eavesdropper matches the gap obtained by the Merkle's Puzzles protocol of Merkle [CACM '78].
In this work we tackle a new aspect of key-agreement protocols in the random oracle model: their communication complexity. In Merkle's Puzzles, to obtain secrecy against an eavesdropper that makes roughly l^2 queries, the honest parties need to exchange Omega(l) bits. We show that for protocols with certain natural properties, ones that Merkle's Puzzle has, such high communication is unavoidable. Specifically, this is the case if the honest parties' queries are uniformly random, or alternatively if the protocol uses non-adaptive queries and has only two rounds. Our proof for the first setting uses a novel reduction from the set-disjointness problem in two-party communication complexity. For the second setting we prove the lower bound directly, using information-theoretic arguments.
Understanding the communication complexity of protocols whose security is proven (in the random-oracle model) is an important question in the study of practical protocols. Our results and proof techniques are a first step in this direction.

Iftach Haitner, Noam Mazor, Rotem Oshman, Omer Reingold, and Amir Yehudayoff. On the Communication Complexity of Key-Agreement Protocols. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{haitner_et_al:LIPIcs.ITCS.2019.40, author = {Haitner, Iftach and Mazor, Noam and Oshman, Rotem and Reingold, Omer and Yehudayoff, Amir}, title = {{On the Communication Complexity of Key-Agreement Protocols}}, booktitle = {10th Innovations in Theoretical Computer Science Conference (ITCS 2019)}, pages = {40:1--40:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-095-8}, ISSN = {1868-8969}, year = {2019}, volume = {124}, editor = {Blum, Avrim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.40}, URN = {urn:nbn:de:0030-drops-101335}, doi = {10.4230/LIPIcs.ITCS.2019.40}, annote = {Keywords: key agreement, random oracle, communication complexity, Merkle's puzzles} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail