Search Results

Documents authored by Hung, Shih-Han


Document
Track A: Algorithms, Complexity and Games
Quantum Query Complexity with Matrix-Vector Products

Authors: Andrew M. Childs, Shih-Han Hung, and Tongyang Li

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We study quantum algorithms that learn properties of a matrix using queries that return its action on an input vector. We show that for various problems, including computing the trace, determinant, or rank of a matrix or solving a linear system that it specifies, quantum computers do not provide an asymptotic speedup over classical computation. On the other hand, we show that for some problems, such as computing the parities of rows or columns or deciding if there are two identical rows or columns, quantum computers provide exponential speedup. We demonstrate this by showing equivalence between models that provide matrix-vector products, vector-matrix products, and vector-matrix-vector products, whereas the power of these models can vary significantly for classical computation.

Cite as

Andrew M. Childs, Shih-Han Hung, and Tongyang Li. Quantum Query Complexity with Matrix-Vector Products. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 55:1-55:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{childs_et_al:LIPIcs.ICALP.2021.55,
  author =	{Childs, Andrew M. and Hung, Shih-Han and Li, Tongyang},
  title =	{{Quantum Query Complexity with Matrix-Vector Products}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{55:1--55:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.55},
  URN =		{urn:nbn:de:0030-drops-141242},
  doi =		{10.4230/LIPIcs.ICALP.2021.55},
  annote =	{Keywords: Quantum algorithms, quantum query complexity, matrix-vector products}
}
Document
Proving Quantum Programs Correct

Authors: Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
As quantum computing progresses steadily from theory into practice, programmers will face a common problem: How can they be sure that their code does what they intend it to do? This paper presents encouraging results in the application of mechanized proof to the domain of quantum programming in the context of the SQIR development. It verifies the correctness of a range of a quantum algorithms including Grover’s algorithm and quantum phase estimation, a key component of Shor’s algorithm. In doing so, it aims to highlight both the successes and challenges of formal verification in the quantum context and motivate the theorem proving community to target quantum computing as an application domain.

Cite as

Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. Proving Quantum Programs Correct. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hietala_et_al:LIPIcs.ITP.2021.21,
  author =	{Hietala, Kesha and Rand, Robert and Hung, Shih-Han and Li, Liyi and Hicks, Michael},
  title =	{{Proving Quantum Programs Correct}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.21},
  URN =		{urn:nbn:de:0030-drops-139160},
  doi =		{10.4230/LIPIcs.ITP.2021.21},
  annote =	{Keywords: Formal Verification, Quantum Computing, Proof Engineering}
}
Document
Optimal Quantum Algorithm for Polynomial Interpolation

Authors: Andrew M. Childs, Wim van Dam, Shih-Han Hung, and Igor E. Shparlinski

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over F_q. A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2 + 1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2 + 1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2 + 1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithm’s success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log(q)) with negligible decrease in the success probability. We end with a conjecture about the quantum query complexity of multivariate polynomial interpolation.

Cite as

Andrew M. Childs, Wim van Dam, Shih-Han Hung, and Igor E. Shparlinski. Optimal Quantum Algorithm for Polynomial Interpolation. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 16:1-16:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{childs_et_al:LIPIcs.ICALP.2016.16,
  author =	{Childs, Andrew M. and van Dam, Wim and Hung, Shih-Han and Shparlinski, Igor E.},
  title =	{{Optimal Quantum Algorithm for Polynomial Interpolation}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{16:1--16:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.16},
  URN =		{urn:nbn:de:0030-drops-62985},
  doi =		{10.4230/LIPIcs.ICALP.2016.16},
  annote =	{Keywords: Quantum algorithms, query complexity, polynomial interpolation, finite fields}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail