Document

**Published in:** LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)

How difficult is it to compute the communication complexity of a two-argument total Boolean function f:[N]×[N] → {0,1}, when it is given as an N×N binary matrix? In 2009, Kushilevitz and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is NP-hard.
In this work, we show that it is NP-hard to approximate the size (number of leaves) of the smallest constant-round protocol for a two-argument total Boolean function f:[N]×[N] → {0,1}, when it is given as an N×N binary matrix. Along the way to proving this, we show a new deterministic variant of the round elimination lemma, which may be of independent interest.

Shuichi Hirahara, Rahul Ilango, and Bruno Loff. Hardness of Constant-Round Communication Complexity. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 31:1-31:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{hirahara_et_al:LIPIcs.CCC.2021.31, author = {Hirahara, Shuichi and Ilango, Rahul and Loff, Bruno}, title = {{Hardness of Constant-Round Communication Complexity}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {31:1--31:30}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.31}, URN = {urn:nbn:de:0030-drops-143055}, doi = {10.4230/LIPIcs.CCC.2021.31}, annote = {Keywords: NP-completeness, Communication Complexity, Round Elimination Lemma, Meta-Complexity} }

Document

**Published in:** LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)

Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive.
In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n → {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators.
Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless 𝖯 = 𝖭𝖯, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions.

Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-Hardness of Circuit Minimization for Multi-Output Functions. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 22:1-22:36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{ilango_et_al:LIPIcs.CCC.2020.22, author = {Ilango, Rahul and Loff, Bruno and Oliveira, Igor C.}, title = {{NP-Hardness of Circuit Minimization for Multi-Output Functions}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {22:1--22:36}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.22}, URN = {urn:nbn:de:0030-drops-125744}, doi = {10.4230/LIPIcs.CCC.2020.22}, annote = {Keywords: MCSP, circuit minimization, communication complexity, Boolean circuit} }

Document

**Published in:** LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)

A longstanding open question is whether there is an equivalence between the computational task of determining the minimum size of any circuit computing a given function and the task of producing a minimum-sized circuit for a given function. While it is widely conjectured that both tasks require "perebor," or brute-force search, researchers have not yet ruled out the possibility that the search problem requires exponential time but the decision problem has a linear time algorithm.
In this paper, we make progress in connecting the search and decision complexity of minimizing formulas. Let MFSP denote the problem that takes as input the truth table of a Boolean function f and an integer size parameter s and decides whether there is a formula for f of size at most s. Let Search- denote the corresponding search problem where one has to output some optimal formula for computing f.
Our main result is that given an oracle to MFSP, one can solve Search-MFSP in time polynomial in the length N of the truth table of f and the number t of "near-optimal" formulas for f, in particular O(N⁶t²)-time. While the quantity t is not well understood, we use this result (and some extensions) to prove that given an oracle to MFSP:
- there is a deterministic 2^O(N/(log log N))-time oracle algorithm for solving Search-MFSP on all but a o(1)-fraction of instances, and
- there is a randomized O(2^.67N)-time oracle algorithm for solving Search-MFSP on all instances. Intriguingly, the main idea behind our algorithms is in some sense a "reverse application" of the gate elimination technique.

Rahul Ilango. Connecting Perebor Conjectures: Towards a Search to Decision Reduction for Minimizing Formulas. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 31:1-31:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{ilango:LIPIcs.CCC.2020.31, author = {Ilango, Rahul}, title = {{Connecting Perebor Conjectures: Towards a Search to Decision Reduction for Minimizing Formulas}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {31:1--31:35}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.31}, URN = {urn:nbn:de:0030-drops-125834}, doi = {10.4230/LIPIcs.CCC.2020.31}, annote = {Keywords: minimum circuit size problem, minimum formula size problem, gate elimination, search to decision reduction, self-reducibility} }

Document

**Published in:** LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)

The Minimum Circuit Size Problem (MCSP) asks whether a given Boolean function has a circuit of at most a given size. MCSP has been studied for over a half-century and has deep connections throughout theoretical computer science including to cryptography, computational learning theory, and proof complexity. For example, we know (informally) that if MCSP is easy to compute, then most cryptography can be broken. Despite this cryptographic hardness connection and extensive research, we still know relatively little about the hardness of MCSP unconditionally. Indeed, until very recently it was unknown whether MCSP can be computed in AC^0[2] (Golovnev et al., ICALP 2019).
Our main contribution in this paper is to formulate a new "oracle" variant of circuit complexity and prove that this problem is NP-complete under randomized reductions. In more detail, we define the Minimum Oracle Circuit Size Problem (MOCSP) that takes as input the truth table of a Boolean function f, a size threshold s, and the truth table of an oracle Boolean function O, and determines whether there is a circuit with O-oracle gates and at most s wires that computes f. We prove that MOCSP is NP-complete under randomized polynomial-time reductions.
We also extend the recent AC^0[p] lower bound against MCSP by Golovnev et al. to a lower bound against the circuit minimization problem for depth-d formulas, (AC^0_d)-MCSP. We view this result as primarily a technical contribution. In particular, our proof takes a radically different approach from prior MCSP-related hardness results.

Rahul Ilango. Approaching MCSP from Above and Below: Hardness for a Conditional Variant and AC^0[p]. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 34:1-34:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{ilango:LIPIcs.ITCS.2020.34, author = {Ilango, Rahul}, title = {{Approaching MCSP from Above and Below: Hardness for a Conditional Variant and AC^0\lbrackp\rbrack}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {34:1--34:26}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.34}, URN = {urn:nbn:de:0030-drops-117191}, doi = {10.4230/LIPIcs.ITCS.2020.34}, annote = {Keywords: Minimum Circuit Size Problem, reductions, NP-completeness, circuit lower bounds} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an n-variate boolean function has circuit complexity less than a given parameter s. We prove that MCSP is hard for constant-depth circuits with mod p gates, for any prime p >= 2 (the circuit class AC^0[p]). Namely, we show that MCSP requires d-depth AC^0[p] circuits of size at least exp(N^{0.49/d}), where N=2^n is the size of an input truth table of an n-variate boolean function. Our circuit lower bound proof shows that MCSP can solve the coin problem: distinguish uniformly random N-bit strings from those generated using independent samples from a biased random coin which is 1 with probability 1/2+N^{-0.49}, and 0 otherwise. Solving the coin problem with such parameters is known to require exponentially large AC^0[p] circuits. Moreover, this also implies that MAJORITY is computable by a non-uniform AC^0 circuit of polynomial size that also has MCSP-oracle gates. The latter has a few other consequences for the complexity of MCSP, e.g., we get that any boolean function in NC^1 (i.e., computable by a polynomial-size formula) can also be computed by a non-uniform polynomial-size AC^0 circuit with MCSP-oracle gates.

Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, and Avishay Tal. AC^0[p] Lower Bounds Against MCSP via the Coin Problem. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.ICALP.2019.66, author = {Golovnev, Alexander and Ilango, Rahul and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina and Tal, Avishay}, title = {{AC^0\lbrackp\rbrack Lower Bounds Against MCSP via the Coin Problem}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {66:1--66:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.66}, URN = {urn:nbn:de:0030-drops-106422}, doi = {10.4230/LIPIcs.ICALP.2019.66}, annote = {Keywords: Minimum Circuit Size Problem (MCSP), circuit lower bounds, AC0\lbrackp\rbrack, coin problem, hybrid argument, MKTP, biased random boolean functions} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail