Search Results

Documents authored by Ilievski, Filip


Document
Generalization by People and Machines (Dagstuhl Seminar 24192)

Authors: Barbara Hammer, Filip Ilievski, Sascha Saralajew, and Frank van Harmelen

Published in: Dagstuhl Reports, Volume 14, Issue 5 (2024)


Abstract
Today’s AI systems are powerful to the extent that they have largely entered the mainstream and divided the world between those who believe AI will solve all our problems and those who fear that AI will be destructive for humanity. Meanwhile, trusting AI is very difficult given its lack of robustness to novel situations, consistency of its outputs, and interpretability of its reasoning process. Building trustworthy AI requires a paradigm shift from the current oversimplified practice of crafting accuracy-driven models to a human-centric design that can enhance human ability on manageable tasks, or enable humans and AIs to solve complex tasks together that are difficult for either separately. At the core of this problem is the unrivaled human generalization and abstraction ability. While today’s AI is able to provide a response to any input, its ability to transfer knowledge to novel situations is still limited by oversimplification practices, as manifested by tasks that involve pragmatics, agent goals, and understanding of narrative structures. As there are currently no venues that allow cross-disciplinary research on the topic of reliable AI generalization, this discrepancy is problematic and requires dedicated efforts to bring in one place generalization experts from different fields within AI, but also with Cognitive Science. This Dagstuhl Seminar thus provided a unique opportunity for discussing the discrepancy between human and AI generalization mechanisms and crafting a vision on how to align the two streams in a compelling and promising way that combines the strengths of both. To ensure an effective seminar, we brought together cross-disciplinary perspectives across computer and cognitive science fields. Our participants included experts in Interpretable Machine Learning, Neuro-Symbolic Reasoning, Explainable AI, Commonsense Reasoning, Case-based Reasoning, Analogy, Cognitive Science, and Human-AI Teaming. Specifically, the seminar participants focused on the following questions: How can cognitive mechanisms in people be used to inspire generalization in AI? What Machine Learning methods hold the promise to enable such reasoning mechanisms? What is the role of data and knowledge engineering for AI and human generalization? How can we design and model human-AI teams that can benefit from their complementary generalization capabilities? How can we evaluate generalization in humans and AI in a satisfactory manner?

Cite as

Barbara Hammer, Filip Ilievski, Sascha Saralajew, and Frank van Harmelen. Generalization by People and Machines (Dagstuhl Seminar 24192). In Dagstuhl Reports, Volume 14, Issue 5, pp. 1-11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{hammer_et_al:DagRep.14.5.1,
  author =	{Hammer, Barbara and Ilievski, Filip and Saralajew, Sascha and van Harmelen, Frank},
  title =	{{Generalization by People and Machines (Dagstuhl Seminar 24192)}},
  pages =	{1--11},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{14},
  number =	{5},
  editor =	{Hammer, Barbara and Ilievski, Filip and Saralajew, Sascha and van Harmelen, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.5.1},
  URN =		{urn:nbn:de:0030-drops-222682},
  doi =		{10.4230/DagRep.14.5.1},
  annote =	{Keywords: Abstraction, Cognitive Science, Generalization, Human-AI Teaming, Interpretable Machine Learning, Neuro-Symbolic AI}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail