Document

**Published in:** LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)

We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results.
We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [Chekuri et al., 2010; Guy Kortsarz and Zeev Nutov, 2011]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [Chekuri et al., 2010]. The rounding is based on recent results in hop-constrained oblivious routing [Ghaffari et al., 2021], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to h-hop constrained network design for which we obtain LP-based bicriteria approximation algorithms.
We also consider a fault-tolerant version of h-hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [Luis Gouveia and Markus Leitner, 2017; Gouveia et al., 2018; Arslan et al., 2020] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.

Chandra Chekuri and Rhea Jain. Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 41:1-41:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.41, author = {Chekuri, Chandra and Jain, Rhea}, title = {{Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {41:1--41:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.41}, URN = {urn:nbn:de:0030-drops-211124}, doi = {10.4230/LIPIcs.ESA.2024.41}, annote = {Keywords: Buy-at-bulk, Hop-constrained network design, LP integrality gap, Fault-tolerant network design} }

Document

**Published in:** LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)

In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems.
- We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022].
- We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022].
- We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).

Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu. From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.42, author = {Chekuri, Chandra and Jain, Rhea and Kulkarni, Shubhang and Zheng, Da Wei and Zhu, Weihao}, title = {{From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {42:1--42:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.42}, URN = {urn:nbn:de:0030-drops-211134}, doi = {10.4230/LIPIcs.ESA.2024.42}, annote = {Keywords: Directed Planar Graphs, Submodular Functions, Steiner Tree, Network Design} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)

Classical network design models, such as the Survivable Network Design problem (SNDP), are (partly) motivated by robustness to faults under the assumption that any subset of edges upto a specific number can fail. We consider non-uniform fault models where the subset of edges that fail can be specified in different ways. Our primary interest is in the flexible graph connectivity model [Adjiashvili, 2013; Adjiashvili et al., 2020; Adjiashvili et al., 2022; Boyd et al., 2023], in which the edge set is partitioned into safe and unsafe edges. Given parameters p,q ≥ 1, the goal is to find a cheap subgraph that remains p-connected even after the failure of q unsafe edges. We also discuss the bulk-robust model [Adjiashvili et al., 2015; Adjiashvili, 2015] and the relative survivable network design model [Dinitz et al., 2022]. While SNDP admits a 2-approximation [K. Jain, 2001], the approximability of problems in these more complex models is much less understood even in special cases. We make two contributions.
Our first set of results are in the flexible graph connectivity model. Motivated by a conjecture that a constant factor approximation is feasible when p and q are fixed, we consider two special cases. For the s-t case we obtain an approximation ratio that depends only on p,q whenever p+q > pq/2 which includes (p,2) and (2,q) for all p,q ≥ 1. For the global connectivity case we obtain an O(q) approximation for (2,q), and an O(p) approximation for (p,2) and (p,3) for any p ≥ 1, and for (p,4) when p is even. These are based on an augmentation framework and decomposing the families of cuts that need to be covered into a small number of uncrossable families.
Our second result is a poly-logarithmic approximation for a generalization of the bulk-robust model when the "width" of the given instance (the maximum number of edges that can fail in any particular scenario) is fixed. Via this, we derive corresponding approximations for the flexible graph connectivity model and the relative survivable network design model. We utilize a recent framework due to Chen et al. [Chen et al., 2022] that was designed for handling group connectivity.

Chandra Chekuri and Rhea Jain. Approximation Algorithms for Network Design in Non-Uniform Fault Models. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ICALP.2023.36, author = {Chekuri, Chandra and Jain, Rhea}, title = {{Approximation Algorithms for Network Design in Non-Uniform Fault Models}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {36:1--36:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.36}, URN = {urn:nbn:de:0030-drops-180885}, doi = {10.4230/LIPIcs.ICALP.2023.36}, annote = {Keywords: non-uniform faults, network design, approximation algorithm} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail