Search Results

Documents authored by Kurpicz, Florian


Document
High Performance Construction of RecSplit Based Minimal Perfect Hash Functions

Authors: Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
A minimal perfect hash function (MPHF) bijectively maps a set S of objects to the first |S| integers. It can be used as a building block in databases and data compression. RecSplit [Esposito et al., ALENEX'20] is currently the most space efficient practical minimal perfect hash function. It heavily relies on trying out hash functions in a brute force way. We introduce rotation fitting, a new technique that makes the search more efficient by drastically reducing the number of tried hash functions. Additionally, we greatly improve the construction time of RecSplit by harnessing parallelism on the level of bits, vectors, cores, and GPUs. In combination, the resulting improvements yield speedups up to 239 on an 8-core CPU and up to 5438 using a GPU. The original single-threaded RecSplit implementation needs 1.5 hours to construct an MPHF for 5 Million objects with 1.56 bits per object. On the GPU, we achieve the same space usage in just 5 seconds. Given that the speedups are larger than the increase in energy consumption, our implementation is more energy efficient than the original implementation.

Cite as

Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. High Performance Construction of RecSplit Based Minimal Perfect Hash Functions. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bez_et_al:LIPIcs.ESA.2023.19,
  author =	{Bez, Dominik and Kurpicz, Florian and Lehmann, Hans-Peter and Sanders, Peter},
  title =	{{High Performance Construction of RecSplit Based Minimal Perfect Hash Functions}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.19},
  URN =		{urn:nbn:de:0030-drops-186728},
  doi =		{10.4230/LIPIcs.ESA.2023.19},
  annote =	{Keywords: compressed data structure, parallel perfect hashing, bit parallelism, GPU, SIMD, parallel computing, vector instructions}
}
Document
Faster Block Tree Construction

Authors: Dominik Köppl, Florian Kurpicz, and Daniel Meyer

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The block tree [Belazzougui et al. J. Comput. Syst. Sci. '21] is a compressed text index that can answer access (extract a character at a position), rank (number of occurrences of a specified character in a prefix of the text), and select (size of smallest prefix such that a specified character has a specified rank) queries. It requires O(zlog(n/z)) words of space, where z is the number of Lempel-Ziv factors of the text. For some highly repetitive inputs, a block tree can require as little as 0.015 bits per character of the text. Small values of z make the block tree a space-efficient alternative to the wavelet tree, which is another index for these three types of queries. While wavelet trees can be constructed fast in practice, up so far compressed versions of the wavelet tree only leverage statistical compression, meaning that they are blind to spaced repetitions. To make block trees usable in practice, a first step is to find ways in constructing them efficiently. We address this problem by presenting a practically efficient construction algorithm for block trees, which is up to an order of magnitude faster than previous implementations. Additionally, we parallelize our implementation, making it the first block tree construction implementation that works in parallel in shared memory.

Cite as

Dominik Köppl, Florian Kurpicz, and Daniel Meyer. Faster Block Tree Construction. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 74:1-74:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{koppl_et_al:LIPIcs.ESA.2023.74,
  author =	{K\"{o}ppl, Dominik and Kurpicz, Florian and Meyer, Daniel},
  title =	{{Faster Block Tree Construction}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{74:1--74:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.74},
  URN =		{urn:nbn:de:0030-drops-187274},
  doi =		{10.4230/LIPIcs.ESA.2023.74},
  annote =	{Keywords: compressed data structure, block tree, Lempel-Ziv compression, longest previous factor array, rank and select}
}
Document
Practical Performance of Space Efficient Data Structures for Longest Common Extensions

Authors: Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian Kurpicz

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
For a text T[1,n], a Longest Common Extension (LCE) query lce_T(i,j) asks for the length of the longest common prefix of the suffixes T[i,n] and T[j,n] identified by their starting positions 1 ≤ i,j ≤ n. A classic problem in stringology asks to preprocess a static text T[1,n] over an alphabet of size σ so that LCE queries can be efficiently answered on-line. Since its introduction in the 1980’s, this problem has found numerous applications: in suffix sorting, edit distance computation, approximate pattern matching, regularities finding, string mining, and many more. Text-book solutions offer O(n) preprocessing time and O(1) query time, but they employ memory-heavy data structures, such as suffix arrays, in practice several times bigger than the text itself. Very recently, more space efficient solutions using O(nlogσ) bits of total space or even only O(log n) bits of extra space have been proposed: string synchronizing sets [Kempa and Kociumaka, STOC'19, and Birenzwige et al., SODA'20] and in-place fingerprinting [Prezza, SODA'18]. The goal of this article is to present well-engineered implementations of these new solutions and study their practicality on a commonly agreed text corpus. We show that both perform extremely well in practice, with space consumption of only around 10% of the input size for string synchronizing sets (around 20% for highly repetitive texts), and essentially no extra space for fingerprinting. Interestingly, our experiments also show that both solutions become much faster than naive scanning even for finding common prefixes of moderate length, contradicting a common belief that sophisticated data structures for LCE queries are not competitive with naive approaches [Ilie and Tinta, SPIRE'09].

Cite as

Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian Kurpicz. Practical Performance of Space Efficient Data Structures for Longest Common Extensions. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dinklage_et_al:LIPIcs.ESA.2020.39,
  author =	{Dinklage, Patrick and Fischer, Johannes and Herlez, Alexander and Kociumaka, Tomasz and Kurpicz, Florian},
  title =	{{Practical Performance of Space Efficient Data Structures for Longest Common Extensions}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.39},
  URN =		{urn:nbn:de:0030-drops-129050},
  doi =		{10.4230/LIPIcs.ESA.2020.39},
  annote =	{Keywords: text indexing, longest common prefix, space efficient data structures}
}
Document
Track A: Algorithms, Complexity and Games
Space Efficient Construction of Lyndon Arrays in Linear Time

Authors: Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz, J. Ian Munro, and Eva Rotenberg

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Given a string S of length n, its Lyndon array identifies for each suffix S[i..n] the next lexicographically smaller suffix S[j..n], i.e. the minimal index j > i with S[i..n] ≻ S[j..n]. Apart from its plain (n log₂ n)-bit array representation, the Lyndon array can also be encoded as a succinct parentheses sequence that requires only 2n bits of space. While linear time construction algorithms for both representations exist, it has previously been unknown if the same time bound can be achieved with less than Ω(n lg n) bits of additional working space. We show that, in fact, o(n) additional bits are sufficient to compute the succinct 2n-bit version of the Lyndon array in linear time. For the plain (n log₂ n)-bit version, we only need 𝒪(1) additional words to achieve linear time. Our space efficient construction algorithm makes the Lyndon array more accessible as a fundamental data structure in applications like full-text indexing.

Cite as

Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz, J. Ian Munro, and Eva Rotenberg. Space Efficient Construction of Lyndon Arrays in Linear Time. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.ICALP.2020.14,
  author =	{Bille, Philip and Ellert, Jonas and Fischer, Johannes and G{\o}rtz, Inge Li and Kurpicz, Florian and Munro, J. Ian and Rotenberg, Eva},
  title =	{{Space Efficient Construction of Lyndon Arrays in Linear Time}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.14},
  URN =		{urn:nbn:de:0030-drops-124211},
  doi =		{10.4230/LIPIcs.ICALP.2020.14},
  annote =	{Keywords: String algorithms, string suffixes, succinct data structures, Lyndon word, Lyndon array, nearest smaller values, nearest smaller suffixes}
}
Document
On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching

Authors: Johannes Fischer, Dominik Köppl, and Florian Kurpicz

Published in: LIPIcs, Volume 54, 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016)


Abstract
We present parallel algorithms for exact and approximate pattern matching with suffix arrays, using a CREW-PRAM with p processors. Given a static text of length n, we first show how to compute the suffix array interval of a given pattern of length m in O(m/p + lg p + lg lg p * lg lg n) time for p <= m. For approximate pattern matching with k differences or mismatches, we show how to compute all occurrences of a given pattern in O((m^k sigma^k)/p max (k, lg lg n) + (1+m/p) lg p * lg lg n + occ} time, where sigma is the size of the alphabet and p <= sigma^k m^k. The workhorse of our algorithms is a data structure for merging suffix array intervals quickly: Given the suffix array intervals for two patterns P and P', we present a data structure for computing the interval of PP' in O(lg lg n) sequential time, or in O(1 + lg_p lg n) parallel time. All our data structures are of size O(n) bits (in addition to the suffix array).

Cite as

Johannes Fischer, Dominik Köppl, and Florian Kurpicz. On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching. In 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 54, pp. 26:1-26:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.CPM.2016.26,
  author =	{Fischer, Johannes and K\"{o}ppl, Dominik and Kurpicz, Florian},
  title =	{{On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching}},
  booktitle =	{27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016)},
  pages =	{26:1--26:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-012-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{54},
  editor =	{Grossi, Roberto and Lewenstein, Moshe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2016.26},
  URN =		{urn:nbn:de:0030-drops-60669},
  doi =		{10.4230/LIPIcs.CPM.2016.26},
  annote =	{Keywords: parallel algorithms, pattern matching, approximate string matching}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail