Search Results

Documents authored by Kush, Deepanshu


Document
Near-Optimal Set-Multilinear Formula Lower Bounds

Authors: Deepanshu Kush and Shubhangi Saraf

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
The seminal work of Raz (J. ACM 2013) as well as the recent breakthrough results by Limaye, Srinivasan, and Tavenas (FOCS 2021, STOC 2022) have demonstrated a potential avenue for obtaining lower bounds for general algebraic formulas, via strong enough lower bounds for set-multilinear formulas. In this paper, we make progress along this direction by proving near-optimal lower bounds against low-depth as well as unbounded-depth set-multilinear formulas. More precisely, we show that over any field of characteristic zero, there is a polynomial f computed by a polynomial-sized set-multilinear branching program (i.e., f is in set-multilinear VBP) defined over Θ(n²) variables and of degree Θ(n), such that any product-depth Δ set-multilinear formula computing f has size at least n^Ω(n^{1/Δ}/Δ). Moreover, we show that any unbounded-depth set-multilinear formula computing f has size at least n^{Ω(log n)}. If such strong lower bounds are proven for the iterated matrix multiplication (IMM) polynomial or rather, any polynomial that is computed by an ordered set-multilinear branching program (i.e., a further restriction of set-multilinear VBP), then this would have dramatic consequences as it would imply super-polynomial lower bounds for general algebraic formulas (Raz, J. ACM 2013; Tavenas, Limaye, and Srinivasan, STOC 2022). Prior to our work, either only weaker lower bounds were known for the IMM polynomial (Tavenas, Limaye, and Srinivasan, STOC 2022), or similar strong lower bounds were known but for a hard polynomial not known to be even in set-multilinear VP (Kush and Saraf, CCC 2022; Raz, J. ACM 2009). By known depth-reduction results, our lower bounds are essentially tight for f and in general, for any hard polynomial that is in set-multilinear VBP or set-multilinear VP. Any asymptotic improvement in the lower bound (for a hard polynomial, say, in VNP) would imply super-polynomial lower bounds for general set-multilinear circuits.

Cite as

Deepanshu Kush and Shubhangi Saraf. Near-Optimal Set-Multilinear Formula Lower Bounds. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 15:1-15:33, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kush_et_al:LIPIcs.CCC.2023.15,
  author =	{Kush, Deepanshu and Saraf, Shubhangi},
  title =	{{Near-Optimal Set-Multilinear Formula Lower Bounds}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{15:1--15:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.15},
  URN =		{urn:nbn:de:0030-drops-182855},
  doi =		{10.4230/LIPIcs.CCC.2023.15},
  annote =	{Keywords: Algebraic Complexity, Set-multilinear, Formula Lower Bounds}
}
Document
Improved Low-Depth Set-Multilinear Circuit Lower Bounds

Authors: Deepanshu Kush and Shubhangi Saraf

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
In this paper, we prove strengthened lower bounds for constant-depth set-multilinear formulas. More precisely, we show that over any field, there is an explicit polynomial f in VNP defined over n² variables, and of degree n, such that any product-depth Δ set-multilinear formula computing f has size at least n^Ω(n^{1/Δ}/Δ). The hard polynomial f comes from the class of Nisan-Wigderson (NW) design-based polynomials. Our lower bounds improve upon the recent work of Limaye, Srinivasan and Tavenas (STOC 2022), where a lower bound of the form (log n)^Ω(Δ n^{1/Δ}) was shown for the size of product-depth Δ set-multilinear formulas computing the iterated matrix multiplication (IMM) polynomial of the same degree and over the same number of variables as f. Moreover, our lower bounds are novel for any Δ ≥ 2. The precise quantitative expression in our lower bound is interesting also because the lower bounds we obtain are "sharp" in the sense that any asymptotic improvement would imply general set-multilinear circuit lower bounds via depth reduction results. In the setting of general set-multilinear formulas, a lower bound of the form n^Ω(log n) was already obtained by Raz (J. ACM 2009) for the more general model of multilinear formulas. The techniques of LST (which extend the techniques of the same authors in (FOCS 2021)) give a different route to set-multilinear formula lower bounds, and allow them to obtain a lower bound of the form (log n)^Ω(log n) for the size of general set-multilinear formulas computing the IMM polynomial. Our proof techniques are another variation on those of LST, and enable us to show an improved lower bound (matching that of Raz) of the form n^Ω(log n), albeit for the same polynomial f in VNP (the NW polynomial). As observed by LST, if the same n^Ω(log n) size lower bounds for unbounded-depth set-multilinear formulas could be obtained for the IMM polynomial, then using the self-reducibility of IMM and using hardness escalation results, this would imply super-polynomial lower bounds for general algebraic formulas.

Cite as

Deepanshu Kush and Shubhangi Saraf. Improved Low-Depth Set-Multilinear Circuit Lower Bounds. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 38:1-38:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kush_et_al:LIPIcs.CCC.2022.38,
  author =	{Kush, Deepanshu and Saraf, Shubhangi},
  title =	{{Improved Low-Depth Set-Multilinear Circuit Lower Bounds}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.38},
  URN =		{urn:nbn:de:0030-drops-166003},
  doi =		{10.4230/LIPIcs.CCC.2022.38},
  annote =	{Keywords: algebraic circuit complexity, complexity measure, set-multilinear formulas}
}
Document
Near Neighbor Search via Efficient Average Distortion Embeddings

Authors: Deepanshu Kush, Aleksandar Nikolov, and Haohua Tang

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC 2018, FOCS 2018) has given approximate near neighbour search (NNS) data structures for a wide class of distance metrics, including all norms. In particular, these data structures achieve approximation on the order of p for 𝓁_p^d norms with space complexity nearly linear in the dataset size n and polynomial in the dimension d, and query time sub-linear in n and polynomial in d. The main shortcoming is the exponential in d pre-processing time required for their construction. In this paper, we describe a more direct framework for constructing NNS data structures for general norms. More specifically, we show via an algorithmic reduction that an efficient NNS data structure for a metric ℳ is implied by an efficient average distortion embedding of ℳ into 𝓁₁ or the Euclidean space. In particular, the resulting data structures require only polynomial pre-processing time, as long as the embedding can be computed in polynomial time. As a concrete instantiation of this framework, we give an NNS data structure for 𝓁_p with efficient pre-processing that matches the approximation factor, space and query complexity of the aforementioned data structure of Andoni et al. On the way, we resolve a question of Naor (Analysis and Geometry in Metric Spaces, 2014) and provide an explicit, efficiently computable embedding of 𝓁_p, for p ≥ 1, into 𝓁₁ with average distortion on the order of p. Furthermore, we also give data structures for Schatten-p spaces with improved space and query complexity, albeit still requiring exponential pre-processing when p ≥ 2. We expect our approach to pave the way for constructing efficient NNS data structures for all norms.

Cite as

Deepanshu Kush, Aleksandar Nikolov, and Haohua Tang. Near Neighbor Search via Efficient Average Distortion Embeddings. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 50:1-50:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kush_et_al:LIPIcs.SoCG.2021.50,
  author =	{Kush, Deepanshu and Nikolov, Aleksandar and Tang, Haohua},
  title =	{{Near Neighbor Search via Efficient Average Distortion Embeddings}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.50},
  URN =		{urn:nbn:de:0030-drops-138490},
  doi =		{10.4230/LIPIcs.SoCG.2021.50},
  annote =	{Keywords: Nearest neighbor search, metric space embeddings, average distortion embeddings, locality-sensitive hashing}
}
Document
A #SAT Algorithm for Small Constant-Depth Circuits with PTF Gates

Authors: Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, and Srikanth Srinivasan

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
We show that there is a zero-error randomized algorithm that, when given a small constant-depth Boolean circuit C made up of gates that compute constant-degree Polynomial Threshold functions or PTFs (i.e., Boolean functions that compute signs of constant-degree polynomials), counts the number of satisfying assignments to C in significantly better than brute-force time. Formally, for any constants d,k, there is an epsilon > 0 such that the zero-error randomized algorithm counts the number of satisfying assignments to a given depth-d circuit C made up of k-PTF gates such that C has size at most n^{1+epsilon}. The algorithm runs in time 2^{n-n^{Omega(epsilon)}}. Before our result, no algorithm for beating brute-force search was known for counting the number of satisfying assignments even for a single degree-k PTF (which is a depth-1 circuit of linear size). The main new tool is the use of a learning algorithm for learning degree-1 PTFs (or Linear Threshold Functions) using comparison queries due to Kane, Lovett, Moran and Zhang (FOCS 2017). We show that their ideas fit nicely into a memoization approach that yields the #SAT algorithms.

Cite as

Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, and Srikanth Srinivasan. A #SAT Algorithm for Small Constant-Depth Circuits with PTF Gates. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 8:1-8:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.ITCS.2019.8,
  author =	{Bajpai, Swapnam and Krishan, Vaibhav and Kush, Deepanshu and Limaye, Nutan and Srinivasan, Srikanth},
  title =	{{A #SAT Algorithm for Small Constant-Depth Circuits with PTF Gates}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.8},
  URN =		{urn:nbn:de:0030-drops-101010},
  doi =		{10.4230/LIPIcs.ITCS.2019.8},
  annote =	{Keywords: SAT, Polynomial Threshold Functions, Constant-depth Boolean Circuits, Linear Decision Trees, Zero-error randomized algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail