Search Results

Documents authored by Lin, Cedric Yen-Yu


Document
Track A: Algorithms, Complexity and Games
Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning

Authors: Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.

Cite as

Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu. Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{brandao_et_al:LIPIcs.ICALP.2019.27,
  author =	{Brand\~{a}o, Fernando G. S. L. and Kalev, Amir and Li, Tongyang and Lin, Cedric Yen-Yu and Svore, Krysta M. and Wu, Xiaodi},
  title =	{{Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.27},
  URN =		{urn:nbn:de:0030-drops-106036},
  doi =		{10.4230/LIPIcs.ICALP.2019.27},
  annote =	{Keywords: quantum algorithms, semidefinite program, convex optimization}
}
Document
A Complete Characterization of Unitary Quantum Space

Authors: Bill Fefferman and Cedric Yen-Yu Lin

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
Motivated by understanding the power of quantum computation with restricted number of qubits, we give two complete characterizations of unitary quantum space bounded computation. First we show that approximating an element of the inverse of a well-conditioned efficiently encoded 2^k(n) x 2^k(n) matrix is complete for the class of problems solvable by quantum circuits acting on O(k(n)) qubits with all measurements at the end of the computation. Similarly, estimating the minimum eigenvalue of an efficiently encoded Hermitian 2^k(n) x 2^k(n) matrix is also complete for this class. In the logspace case, our results improve on previous results of Ta-Shma by giving new space-efficient quantum algorithms that avoid intermediate measurements, as well as showing matching hardness results. Additionally, as a consequence we show that preciseQMA, the version of QMA with exponentially small completeness-soundess gap, is equal to PSPACE. Thus, the problem of estimating the minimum eigenvalue of a local Hamiltonian to inverse exponential precision is PSPACE-complete, which we show holds even in the frustration-free case. Finally, we can use this characterization to give a provable setting in which the ability to prepare the ground state of a local Hamiltonian is more powerful than the ability to prepare PEPS states. Interestingly, by suitably changing the parameterization of either of these problems we can completely characterize the power of quantum computation with simultaneously bounded time and space.

Cite as

Bill Fefferman and Cedric Yen-Yu Lin. A Complete Characterization of Unitary Quantum Space. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fefferman_et_al:LIPIcs.ITCS.2018.4,
  author =	{Fefferman, Bill and Lin, Cedric Yen-Yu},
  title =	{{A Complete Characterization of Unitary Quantum Space}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.4},
  URN =		{urn:nbn:de:0030-drops-83242},
  doi =		{10.4230/LIPIcs.ITCS.2018.4},
  annote =	{Keywords: Quantum complexity, space complexity, complete problems, QMA}
}
Document
Oracles with Costs

Authors: Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin

Published in: LIPIcs, Volume 44, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)


Abstract
While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. This model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grover's algorithm, that our algorithm is exactly optimal.

Cite as

Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin. Oracles with Costs. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kimmel_et_al:LIPIcs.TQC.2015.1,
  author =	{Kimmel, Shelby and Lin, Cedric Yen-Yu and Lin, Han-Hsuan},
  title =	{{Oracles with Costs}},
  booktitle =	{10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)},
  pages =	{1--26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-96-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{44},
  editor =	{Beigi, Salman and K\"{o}nig, Robert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2015.1},
  URN =		{urn:nbn:de:0030-drops-55459},
  doi =		{10.4230/LIPIcs.TQC.2015.1},
  annote =	{Keywords: Quantum Algorithms, Query Complexity, Amplitude Amplification}
}
Document
Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester

Authors: Cedric Yen-Yu Lin and Han-Hsuan Lin

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
Inspired by the Elitzur-Vaidman bomb testing problem [Elitzur/Vaidman 1993], we introduce a new query complexity model, which we call bomb query complexity B(f). We investigate its relationship with the usual quantum query complexity Q(f), and show that B(f)=Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Theta(sqrt(B(f))). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n^(1.5)) quantum query complexity, improving the best known algorithm of O(n^(1.5) * sqrt(log(n))) [Furrow, 2008]. Applying this method to the maximum bipartite matching problem gives an O(n^(1.75)) algorithm, improving the best known trivial O(n^2) upper bound.

Cite as

Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 537-566, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.CCC.2015.537,
  author =	{Lin, Cedric Yen-Yu and Lin, Han-Hsuan},
  title =	{{Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{537--566},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.537},
  URN =		{urn:nbn:de:0030-drops-50635},
  doi =		{10.4230/LIPIcs.CCC.2015.537},
  annote =	{Keywords: Quantum Algorithms, Query Complexity, Elitzur-Vaidman Bomb Tester, Adversary Method, Maximum Bipartite Matching}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail