Search Results

Documents authored by Lindzey, Nathan


Document
Extended Abstract
Complexity Measures on the Symmetric Group and Beyond (Extended Abstract)

Authors: Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We extend the definitions of complexity measures of functions to domains such as the symmetric group. The complexity measures we consider include degree, approximate degree, decision tree complexity, sensitivity, block sensitivity, and a few others. We show that these complexity measures are polynomially related for the symmetric group and for many other domains. To show that all measures but sensitivity are polynomially related, we generalize classical arguments of Nisan and others. To add sensitivity to the mix, we reduce to Huang’s sensitivity theorem using "pseudo-characters", which witness the degree of a function. Using similar ideas, we extend the characterization of Boolean degree 1 functions on the symmetric group due to Ellis, Friedgut and Pilpel to the perfect matching scheme. As another application of our ideas, we simplify the characterization of maximum-size t-intersecting families in the symmetric group and the perfect matching scheme.

Cite as

Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals. Complexity Measures on the Symmetric Group and Beyond (Extended Abstract). In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 87:1-87:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dafni_et_al:LIPIcs.ITCS.2021.87,
  author =	{Dafni, Neta and Filmus, Yuval and Lifshitz, Noam and Lindzey, Nathan and Vinyals, Marc},
  title =	{{Complexity Measures on the Symmetric Group and Beyond}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{87:1--87:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.87},
  URN =		{urn:nbn:de:0030-drops-136267},
  doi =		{10.4230/LIPIcs.ITCS.2021.87},
  annote =	{Keywords: Computational Complexity Theory, Analysis of Boolean Functions, Complexity Measures, Extremal Combinatorics}
}
Document
A Tight Lower Bound For Non-Coherent Index Erasure

Authors: Nathan Lindzey and Ansis Rosmanis

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
The index erasure problem is a quantum state generation problem that asks a quantum computer to prepare a uniform superposition over the image of an injective function given by an oracle. We prove a tight Ω(√n) lower bound on the quantum query complexity of the non-coherent case of the problem, where, in addition to preparing the required superposition, the algorithm is allowed to leave the ancillary memory in an arbitrary function-dependent state. This resolves an open question of Ambainis, Magnin, Roetteler, and Roland (CCC 2011), who gave a tight bound for the coherent case, the case where the ancillary memory must return to its initial state. To prove our main result, we first extend the so-called automorphism principle (Høyer et al. STOC 2007) to the general adversary method for state conversion problems (Lee et al. STOC 2011), which allows one to exploit the symmetries of these problems to lower bound their quantum query complexity. Using this method, we establish a strong connection between the quantum query complexity of non-coherent symmetric state generation problems and the well-known Krein parameters of association schemes. Krein parameters are usually hard to determine, nevertheless, we give a novel way of computing certain Krein parameters of a commutative association scheme defined over partial permutations. We believe the study of this association scheme may also be of independent interest.

Cite as

Nathan Lindzey and Ansis Rosmanis. A Tight Lower Bound For Non-Coherent Index Erasure. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 59:1-59:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lindzey_et_al:LIPIcs.ITCS.2020.59,
  author =	{Lindzey, Nathan and Rosmanis, Ansis},
  title =	{{A Tight Lower Bound For Non-Coherent Index Erasure}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{59:1--59:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.59},
  URN =		{urn:nbn:de:0030-drops-117446},
  doi =		{10.4230/LIPIcs.ITCS.2020.59},
  annote =	{Keywords: General Adversary Method, Quantum Query Complexity, Association Schemes, Krein Parameters, Representation Theory}
}