Search Results

Documents authored by Liu, Allen


Document
Distributed Load Balancing: A New Framework and Improved Guarantees

Authors: Sara Ahmadian, Allen Liu, Binghui Peng, and Morteza Zadimoghaddam

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Inspired by applications on search engines and web servers, we consider a load balancing problem with a general convex objective function. In this problem, we are given a bipartite graph on a set of sources S and a set of workers W and the goal is to distribute the load from each source among its neighboring workers such that the total load of workers are as balanced as possible. We present a new distributed algorithm that works with any symmetric non-decreasing convex function for evaluating the balancedness of the workers' load. Our algorithm computes a nearly optimal allocation of loads in O(log n log² d/ε³) rounds where n is the number of nodes, d is the maximum degree, and ε is the desired precision. If the objective is to minimize the maximum load, we modify the algorithm to obtain a nearly optimal solution in O(log n log d/ε²) rounds. This improves a line of algorithms that require a polynomial number of rounds in n and d and appear to encounter a fundamental barrier that prevents them from obtaining poly-logarithmic runtime [Berenbrink et al., 2005; Berenbrink et al., 2009; Subramanian and Scherson, 1994; Rabani et al., 1998]. In our paper, we introduce a novel primal-dual approach with multiplicative weight updates that allows us to circumvent this barrier. Our algorithm is inspired by [Agrawal et al., 2018] and other distributed algorithms for optimizing linear objectives but introduces several new twists to deal with general convex objectives.

Cite as

Sara Ahmadian, Allen Liu, Binghui Peng, and Morteza Zadimoghaddam. Distributed Load Balancing: A New Framework and Improved Guarantees. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 79:1-79:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ahmadian_et_al:LIPIcs.ITCS.2021.79,
  author =	{Ahmadian, Sara and Liu, Allen and Peng, Binghui and Zadimoghaddam, Morteza},
  title =	{{Distributed Load Balancing: A New Framework and Improved Guarantees}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{79:1--79:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.79},
  URN =		{urn:nbn:de:0030-drops-136186},
  doi =		{10.4230/LIPIcs.ITCS.2021.79},
  annote =	{Keywords: Load balancing, Distributed algorithms}
}
Document
Fourier and Circulant Matrices Are Not Rigid

Authors: Zeev Dvir and Allen Liu

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
The concept of matrix rigidity was first introduced by Valiant in [Friedman, 1993]. Roughly speaking, a matrix is rigid if its rank cannot be reduced significantly by changing a small number of entries. There has been extensive interest in rigid matrices as Valiant showed in [Friedman, 1993] that rigidity can be used to prove arithmetic circuit lower bounds. In a surprising result, Alman and Williams showed that the (real valued) Hadamard matrix, which was conjectured to be rigid, is actually not very rigid. This line of work was extended by [Dvir and Edelman, 2017] to a family of matrices related to the Hadamard matrix, but over finite fields. In our work, we take another step in this direction and show that for any abelian group G and function f:G - > {C}, the matrix given by M_{xy} = f(x - y) for x,y in G is not rigid. In particular, we get that complex valued Fourier matrices, circulant matrices, and Toeplitz matrices are all not rigid and cannot be used to carry out Valiant’s approach to proving circuit lower bounds. This complements a recent result of Goldreich and Tal [Goldreich and Tal, 2016] who showed that Toeplitz matrices are nontrivially rigid (but not enough for Valiant’s method). Our work differs from previous non-rigidity results in that those works considered matrices whose underlying group of symmetries was of the form {F}_p^n with p fixed and n tending to infinity, while in the families of matrices we study, the underlying group of symmetries can be any abelian group and, in particular, the cyclic group {Z}_N, which has very different structure. Our results also suggest natural new candidates for rigidity in the form of matrices whose symmetry groups are highly non-abelian. Our proof has four parts. The first extends the results of [Josh Alman and Ryan Williams, 2016; Dvir and Edelman, 2017] to generalized Hadamard matrices over the complex numbers via a new proof technique. The second part handles the N x N Fourier matrix when N has a particularly nice factorization that allows us to embed smaller copies of (generalized) Hadamard matrices inside of it. The third part uses results from number theory to bootstrap the non-rigidity for these special values of N and extend to all sufficiently large N. The fourth and final part involves using the non-rigidity of the Fourier matrix to show that the group algebra matrix, given by M_{xy} = f(x - y) for x,y in G, is not rigid for any function f and abelian group G.

Cite as

Zeev Dvir and Allen Liu. Fourier and Circulant Matrices Are Not Rigid. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 17:1-17:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dvir_et_al:LIPIcs.CCC.2019.17,
  author =	{Dvir, Zeev and Liu, Allen},
  title =	{{Fourier and Circulant Matrices Are Not Rigid}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{17:1--17:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.17},
  URN =		{urn:nbn:de:0030-drops-108390},
  doi =		{10.4230/LIPIcs.CCC.2019.17},
  annote =	{Keywords: Rigidity, Fourier matrix, Circulant matrix}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail