Search Results

Documents authored by Long, Yaowei


Document
Length-Constrained Directed Expander Decomposition and Length-Constrained Vertex-Capacitated Flow Shortcuts

Authors: Bernhard Haeupler, Yaowei Long, Thatchaphol Saranurak, and Shengzhe Wang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We show the existence of length-constrained expander decomposition in directed graphs and undirected vertex-capacitated graphs. Previously, its existence was shown only in undirected edge-capacitated graphs [Bernhard Haeupler et al., 2022; Haeupler et al., 2024]. Along the way, we prove the multi-commodity maxflow-mincut theorems for length-constrained expansion in both directed and undirected vertex-capacitated graphs. Based on our decomposition, we build a length-constrained flow shortcut for undirected vertex-capacitated graphs, which roughly speaking is a set of edges and vertices added to the graph so that every multi-commodity flow demand can be routed with approximately the same vertex-congestion and length, but all flow paths only contain few edges. This generalizes the shortcut for undirected edge-capacitated graphs from [Bernhard Haeupler et al., 2024]. Length-constrained expander decomposition and flow shortcuts have been crucial in the recent algorithms in undirected edge-capacitated graphs [Bernhard Haeupler et al., 2024; Haeupler et al., 2024]. Our work thus serves as a foundation to generalize these concepts to directed and vertex-capacitated graphs.

Cite as

Bernhard Haeupler, Yaowei Long, Thatchaphol Saranurak, and Shengzhe Wang. Length-Constrained Directed Expander Decomposition and Length-Constrained Vertex-Capacitated Flow Shortcuts. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 107:1-107:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{haeupler_et_al:LIPIcs.ESA.2025.107,
  author =	{Haeupler, Bernhard and Long, Yaowei and Saranurak, Thatchaphol and Wang, Shengzhe},
  title =	{{Length-Constrained Directed Expander Decomposition and Length-Constrained Vertex-Capacitated Flow Shortcuts}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{107:1--107:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.107},
  URN =		{urn:nbn:de:0030-drops-245765},
  doi =		{10.4230/LIPIcs.ESA.2025.107},
  annote =	{Keywords: Length-Constrained Expander, Expander Decomposition, Shortcut}
}
Document
Track A: Algorithms, Complexity and Games
Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity

Authors: Yaowei Long and Yunfan Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the sensitivity oracles problem for subgraph connectivity in the decremental and fully dynamic settings. In the fully dynamic setting, we preprocess an n-vertices m-edges undirected graph G with n_{off} deactivated vertices initially and the others are activated. Then we receive a single update D ⊆ V(G) of size |D| = d ≤ d_{⋆}, representing vertices whose states will be switched. Finally, we get a sequence of queries, each of which asks the connectivity of two given vertices u and v in the activated subgraph. The decremental setting is a special case when there is no deactivated vertex initially, and it is also known as the vertex-failure connectivity oracles problem. We present a better deterministic vertex-failure connectivity oracle with Ô(d_{⋆}m) preprocessing time, Õ(m) space, Õ(d²) update time and O(d) query time, which improves the update time of the previous almost-optimal oracle [Long and Saranurak, 2022] from Ô(d²) to Õ(d²). We also present a better deterministic fully dynamic sensitivity oracle for subgraph connectivity with Ô(min{m(n_{off} + d_{⋆}),n^{ω}}) preprocessing time, Õ(min{m(n_{off} + d_{⋆}),n²}) space, Õ(d²) update time and O(d) query time, which significantly improves the update time of the state of the art [Bingbing Hu et al., 2023] from Õ(d⁴) to Õ(d²). Furthermore, our solution is even almost-optimal assuming popular fine-grained complexity conjectures.

Cite as

Yaowei Long and Yunfan Wang. Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 109:1-109:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{long_et_al:LIPIcs.ICALP.2024.109,
  author =	{Long, Yaowei and Wang, Yunfan},
  title =	{{Better Decremental and Fully Dynamic Sensitivity Oracles for Subgraph Connectivity}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{109:1--109:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.109},
  URN =		{urn:nbn:de:0030-drops-202523},
  doi =		{10.4230/LIPIcs.ICALP.2024.109},
  annote =	{Keywords: connectivity, sensitivity}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail