Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)
Sándor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas Parekh, and Cynthia A. Phillips. Probing a Set of Trajectories to Maximize Captured Information. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{fekete_et_al:LIPIcs.SEA.2020.5, author = {Fekete, S\'{a}ndor P. and Hill, Alexander and Krupke, Dominik and Mayer, Tyler and Mitchell, Joseph S. B. and Parekh, Ojas and Phillips, Cynthia A.}, title = {{Probing a Set of Trajectories to Maximize Captured Information}}, booktitle = {18th International Symposium on Experimental Algorithms (SEA 2020)}, pages = {5:1--5:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-148-1}, ISSN = {1868-8969}, year = {2020}, volume = {160}, editor = {Faro, Simone and Cantone, Domenico}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.5}, URN = {urn:nbn:de:0030-drops-120796}, doi = {10.4230/LIPIcs.SEA.2020.5}, annote = {Keywords: Algorithm engineering, optimization, complexity, approximation, trajectories} }
Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)
Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J. Katz, Tyler Mayer, and Joseph S. B. Mitchell. Network Optimization on Partitioned Pairs of Points. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{arkin_et_al:LIPIcs.ISAAC.2017.6, author = {Arkin, Esther M. and Banik, Aritra and Carmi, Paz and Citovsky, Gui and Jia, Su and Katz, Matthew J. and Mayer, Tyler and Mitchell, Joseph S. B.}, title = {{Network Optimization on Partitioned Pairs of Points}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {6:1--6:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.6}, URN = {urn:nbn:de:0030-drops-82700}, doi = {10.4230/LIPIcs.ISAAC.2017.6}, annote = {Keywords: Network Optimization, TSP tour, Matching, Spanning Tree, Pairs, Partition, Algorithms, Complexity} }
Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)
Gui Citovsky, Tyler Mayer, and Joseph S. B. Mitchell. TSP With Locational Uncertainty: The Adversarial Model. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 32:1-32:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{citovsky_et_al:LIPIcs.SoCG.2017.32, author = {Citovsky, Gui and Mayer, Tyler and Mitchell, Joseph S. B.}, title = {{TSP With Locational Uncertainty: The Adversarial Model}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {32:1--32:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.32}, URN = {urn:nbn:de:0030-drops-72334}, doi = {10.4230/LIPIcs.SoCG.2017.32}, annote = {Keywords: traveling salesperson problem, TSP with neighborhoods, approximation algorithms, uncertainty} }
Feedback for Dagstuhl Publishing