Network Optimization on Partitioned Pairs of Points

Authors Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J. Katz, Tyler Mayer, Joseph S. B. Mitchell



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2017.6.pdf
  • Filesize: 0.56 MB
  • 12 pages

Document Identifiers

Author Details

Esther M. Arkin
Aritra Banik
Paz Carmi
Gui Citovsky
Su Jia
Matthew J. Katz
Tyler Mayer
Joseph S. B. Mitchell

Cite AsGet BibTex

Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J. Katz, Tyler Mayer, and Joseph S. B. Mitchell. Network Optimization on Partitioned Pairs of Points. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ISAAC.2017.6

Abstract

Given n pairs of points, S = {{p_1, q_1}, {p_2, q_2}, ..., {p_n, q_n}}, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases.
Keywords
  • Network Optimization
  • TSP tour
  • Matching
  • Spanning Tree
  • Pairs
  • Partition
  • Algorithms
  • Complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong Ma, Belén Palop, and Vera Sacristán. Smallest color-spanning objects. In FriedhelmMeyer auf der Heide, editor, Algorithms — ESA 2001, volume 2161 of Lecture Notes in Computer Science, pages 278-289. Springer Berlin Heidelberg, 2001. URL: http://dx.doi.org/10.1007/3-540-44676-1_23.
  2. Esther M Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J Katz, Tyler Mayer, and Joseph SB Mitchell. Network optimization on partitioned pairs of points. arXiv, submission 2025570, 2017. URL: https://arxiv.org/abs/1710.00876.
  3. Esther M. Arkin, José M. Díaz-Báñez, Ferran Hurtado, Piyush Kumar, Joseph S. B. Mitchell, Belén Palop, Pablo Pérez-Lantero, Maria Saumell, and Rodrigo I. Silveira. Bichromatic 2-center of pairs of points. Comput. Geom., 48(2):94-107, 2015. URL: http://dx.doi.org/10.1016/j.comgeo.2014.08.004.
  4. Esther M. Arkin and Refael Hassin. Minimum-diameter covering problems. Networks, 36(3):147-155, 2000. Google Scholar
  5. Luis Barba, Stephane Durocher, Robert Fraser, Ferran Hurtado, Saeed Mehrabi, Debajyoti Mondal, Jason Morrison, Matthew Skala, and Mohammad Abdul Wahid. On k-enclosing objects in a coloured point set. In Proceedings of the 25th Canadian Conference on Computational Geometry, CCCG 2013, Waterloo, Ontario, Canada, August 8-10, 2013. Carleton University, Ottawa, Canada, 2013. URL: http://cccg.ca/proceedings/2013/papers/paper_35.pdf.
  6. Binay K. Bhattacharya, Ante Custic, Akbar Rafiey, Arash Rafiey, and Vladyslav Sokol. Approximation algorithms for generalized MST and TSP in grid clusters. In Zaixin Lu, Donghyun Kim, Weili Wu, Wei Li, and Ding-Zhu Du, editors, Combinatorial Optimization and Applications - 9th International Conference, COCOA 2015, Houston, TX, USA, December 18-20, 2015, Proceedings, volume 9486 of Lecture Notes in Computer Science, pages 110-125. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-26626-8_9.
  7. Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document, 1976. Google Scholar
  8. Mario E. Consuegra and Giri Narasimhan. Geometric avatar problems. In Anil Seth and Nisheeth K. Vishnoi, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 389-400. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.389.
  9. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to algorithms second edition, 2001. Google Scholar
  10. Sandip Das, Partha P. Goswami, and Subhas C. Nandy. Smallest color-spanning object revisited. International Journal of Computational Geometry and Applications, 19(05):457-478, 2009. URL: http://dx.doi.org/10.1142/S0218195909003076.
  11. Martin E Dyer and Alan M Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics, 10(2):139-153, 1985. Google Scholar
  12. Harold N. Gabow, Shachindra N. Maheshwari, and Leon J. Osterweil. On two problems in the generation of program test paths. IEEE Transactions on Software Engineering, 2(3):227-231, 1976. Google Scholar
  13. Philip Hall. On representatives of subsets. J. London Math. Soc, 10(1):26-30, 1935. Google Scholar
  14. Dan Ismailescu and Joseph Park. Improved upper bounds for the steiner ratio. Discrete Optimization, 11:22-30, 2014. URL: http://dx.doi.org/10.1016/j.disopt.2013.10.004.
  15. Payam Khanteimouri, Ali Mohades, MohammadAli Abam, and MohammadReza Kazemi. Computing the smallest color-spanning axis-parallel square. In Leizhen Cai, Siu-Wing Cheng, and Tak-Wah Lam, editors, Algorithms and Computation, volume 8283 of Lecture Notes in Computer Science, pages 634-643. Springer Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.1007/978-3-642-45030-3_59.
  16. Joseph SB Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM Journal on Computing, 28(4):1298-1309, 1999. Google Scholar
  17. Young-Soo Myung, Chang-ho Lee, and Dong-wan Tcha. On the generalized minimum spanning tree problem. Networks, 26(4):231-241, 1995. URL: http://dx.doi.org/10.1002/net.3230260407.
  18. Petrica C. Pop. New models of the generalized minimum spanning tree problem. J. Math. Model. Algorithms, 3(2):153-166, 2004. URL: http://dx.doi.org/10.1023/B:JMMA.0000036579.83218.8d.
  19. Petrica C. Pop, Walter Kern, Georg Still, and Ulrich Faigle. Relaxation methods for the generalized minimum spanning tree problem. Electronic Notes in Discrete Mathematics, 8:76-79, 2001. URL: http://dx.doi.org/10.1016/S1571-0653(05)80085-X.
  20. Petr Slavik. Approximation algorithms for set cover and related problems. PhD thesis, State University of New York at Buffalo, Buffalo, NY, USA, 1998. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail